147 research outputs found
Choosing Organic Pesticides over Synthetic Pesticides May Not Effectively Mitigate Environmental Risk in Soybeans
Background: Selection of pesticides with small ecological footprints is a key factor in developing sustainable agricultural systems. Policy guiding the selection of pesticides often emphasizes natural products and organic-certified pesticides to increase sustainability, because of the prevailing public opinion that natural products are uniformly safer, and thus more environmentally friendly, than synthetic chemicals. Methodology/Principal Findings: We report the results of a study examining the environmental impact of several new synthetic and certified organic insecticides under consideration as reduced-risk insecticides for soybean aphid (Aphis glycines) control, using established and novel methodologies to directly quantify pesticide impact in terms of biocontrol services. We found that in addition to reduced efficacy against aphids compared to novel synthetic insecticides, organic approved insecticides had a similar or even greater negative impact on several natural enemy species in lab studies, were more detrimental to biological control organisms in field experiments, and had higher Environmental Impact Quotients at field use rates. Conclusions/Significance: These data bring into caution the widely held assumption that organic pesticides are more environmentally benign than synthetic ones. All pesticides must be evaluated using an empirically-based risk assessment
Detection of diploid males in a natural colony of the cleptobiotic bee Lestrimelitta sp (Hymenoptera, Apidae)
When working at quantifying the genome size of stingless bees, it was observed that males of Lestrimelitta sp possessed the same amount of nuclear DNA as the females. Thus, we used flow cytometry (FCM) and cytogenetic analysis to confirm the ploidy of these individuals. The males analyzed proved to be diploid, since, through cytometric analysis, it was demonstrated that the mean genome size of both males and females was the same (C = 0.463 pg), and, furthermore, cytogenetic analysis demonstrated that both had 2n = 28 chromosomes
Drone aggregation behavior in the social wasp Vespula germanica (Hymenoptera: Vespidae): Effect of kinship and density
Inbreeding can have negative consequences on population viability because of the reduced fitness of the progeny. In general, most species have developed mechanisms to minimize inbreeding such as dispersal and kin avoidance behavior. In the eusocial Hymenoptera, related individuals typically share a common nest and have relatively short mating periods, this could lead to inbreeding, and because of their single?locus complementary sex determination system, it may generate diploid males that could result in infertile triploid progeny representing a cost for the colony. Vespula germanica, is an eusocial wasp that has invaded many parts of the world, despite likely facing a reduced genetic pool during the arrival phases. We ask whether male wasp display specific aggregation behavior that favors genetic diversity, key to reduce inbreeding. Through a set of laboratory experiments, we investigated the effects of drone nestmateship and density on the aggregation behavior of V. germanica drones. We show that drones avoid aggregating with their nestmates at all densities while non-nestmates are avoided only at high densities. This suggests that lek genetic diversity and density could be regulated through drone behavior and in the long run minimize inbreeding favoring invasion success.Fil: Masciocchi, Maité. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Angeletti, Bárbara. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Corley, Juan Carlos. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Martinez Von Ellrichshausen, Andres Santiago. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentin
Metabolomics of aging assessed in individual parasitoid wasps
Metabolomics studies of low-biomass organisms, such as small insects, have previously relied on the pooling of biological samples to overcome detection limits, particularly using NMR. We show that the differentiation of metabolite profiles of individual 1 mg parasitoid wasps of different ages is possible when using a modified sample preparation and a combination of untargeted NMR and LC-MS based metabolomics. Changes were observed between newly emerged and older wasps in glycerolipids, amino acids and circulatory sugars. This advance in chemical profiling has important implications for the study of the behaviour and ecology of parasitoids and many other species of small organisms because predictions and observations are typically made at the level of the individual. Thus, the metabolomic state of low-biomass individuals can now be related to their behaviour and ecological performance. We discuss specifically the utility of age-related metabolomic profiling but our new approach can be applied to a wide range of biological research
Bt Crop Effects on Functional Guilds of Non-Target Arthropods: A Meta-Analysis
Background: Uncertainty persists over the environmental effects of genetically-engineered crops that produce the insecticidal Cry proteins of Bacillus thuringiensis (Bt). We performed meta-analyses on a modified public database to synthesize current knowledge about the effects of Bt cotton, maize and potato on the abundance and interactions of arthropod non-target functional guilds. Methodology/Principal Findings: We compared the abundance of predators, parasitoids, omnivores, detritivores and herbivores under scenarios in which neither, only the non-Bt crops, or both Bt and non-Bt crops received insecticide treatments. Predators were less abundant in Bt cotton compared to unsprayed non-Bt controls. As expected, fewer specialist parasitoids of the target pest occurred in Bt maize fields compared to unsprayed non-Bt controls, but no significant reduction was detected for other parasitoids. Numbers of predators and herbivores were higher in Bt crops compared to sprayed non-Bt controls, and type of insecticide influenced the magnitude of the difference. Omnivores and detritivores were more abundant in insecticide-treated controls and for the latter guild this was associated with reductions of their predators in sprayed non-Bt maize. No differences in abundance were found when both Bt and non-Bt crops were sprayed. Predator-to-prey ratios were unchanged by either Bt crops or the use of insecticides; ratios were higher in Bt maize relative to the sprayed non-Bt control
Moving Your Sons to Safety: Galls Containing Male Fig Wasps Expand into the Centre of Figs, Away From Enemies
Figs are the inflorescences of fig trees (Ficus spp., Moraceae). They are shaped like a hollow ball, lined on their inner surface by numerous tiny female flowers. Pollination is carried out by host-specific fig wasps (Agaonidae). Female pollinators enter the figs through a narrow entrance gate and once inside can walk around on a platform generated by the stigmas of the flowers. They lay their eggs into the ovules, via the stigmas and styles, and also gall the flowers, causing the ovules to expand and their pedicels to elongate. A single pollinator larva develops in each galled ovule. Numerous species of non-pollinating fig wasps (NPFW, belonging to other families of Chalcidoidea) also make use of galled ovules in the figs. Some initiate galls, others make use of pollinator-generated galls, killing pollinator larvae. Most NPFW oviposit from the outside of figs, making peripherally-located pollinator larvae more prone to attack. Style length variation is high among monoecious Ficus spp. and pollinators mainly oviposit into more centrally-located ovules, with shorter styles. Style length variation is lower in male (wasp-producing) figs of dioecious Ficus spp., making ovules equally vulnerable to attack by NPFW at the time that pollinators oviposit
Does Kin Recognition and Sib-Mating Avoidance Limit the Risk of Genetic Incompatibility in a Parasitic Wasp?
Background: When some combinations of maternal and paternal alleles have a detrimental effect on offspring fitness, females should be able to choose mates on the basis of their genetic compatibility. In numerous Hymenoptera, the sex of an individual depends of the allelic combination at a specific locus (single-locus Complementary Sex Determination), and in most of these species individuals that are homozygous at this sexual locus develop into diploid males with zero fitness. Methods and Findings: In this paper, we tested the hypothesis of genetic incompatibility avoidance by investigating sibmating avoidance in the solitary wasp parasitoid, Venturia canescens. In the context of mate choice we show, for the first time in a non-social hymenopteran species, that females can avoid mating with their brothers through kin recognition. In ‘‘no-choice’ ’ tests, the probability a female will mate with an unrelated male is twice as high as the chance of her mating with her brothers. In contrast, in choice tests in small test arenas, no kin discrimination effect was observed. Further experiments with male extracts demonstrate that chemical cues emanating from related males influence the acceptance rate of unrelated males. Conclusions: Our results are compatible with the genetic incompatibility hypothesis. They suggest that the female wasps recognize sibs on the basis of a chemical signature carried or emitted by males possibly using a ‘‘self-referent phenotyp
Legionella pneumophila Secretes a Mitochondrial Carrier Protein during Infection
The Mitochondrial Carrier Family (MCF) is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionella nucleotide carrier Protein (LncP), encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms
- …