2,352 research outputs found

    Novel Data Acquisition System for Silicon Tracking Detectors

    Full text link
    We have developed a novel data acquisition system for measuring tracking parameters of a silicon detector in a particle beam. The system is based on a commercial Analog-to-Digital VME module and a PC Linux based Data Acquisition System. This DAQ is realized with C++ code using object-oriented techniques. Track parameters for the beam particles were reconstructed using off-line analysis code and automatic detector position alignment algorithm. The new DAQ was used to test novel Czochralski type silicon detectors. The important silicon detector parameters, including signal size distributions and signal to noise distributions, were successfully extracted from the detector under study. The efficiency of the detector was measured to be 95 %, the resolution about 10 micrometers, and the signal to noise ratio about 10.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 6 pages, LaTeX, 5 eps figures. PSN TUGP00

    Liquid-state NMR analysis of nanocelluloses

    Get PDF
    Recent developments in ionic liquid electrolytes for cellulose or biomass dissolution has also allowed for high-resolution 1H and 13C NMR on very high molecular weight cellulose. This permits the development of advanced liquid-state quantitative NMR methods for characterization of unsubstituted and low degree of substitution celluloses, for example, surface-modified nanocelluloses, which are insoluble in all molecular solvents. As such, we present the use of the tetrabutylphosphonium acetate ([P4444][OAc]):DMSO-d6 electrolyte in the 1D and 2D NMR characterization of poly(methyl methacrylate) (PMMA)-grafted cellulose nanocrystals (CNCs). PMMA-g-CNCs was chosen as a difficult model to study, to illustrate the potential of the technique. The chemical shift range of [P4444][OAc] is completely upfield of the cellulose backbone signals, avoiding signal overlap. In addition, application of diffusion-editing for 1H and HSQC was shown to be effective in the discrimination between PMMA polymer graft resonances and those from low molecular weight components arising from the solvent system. The bulk ratio of methyl methacrylate monomer to anhydroglucose unit was determined using a combination of HSQC and quantitative 13C NMR. After detachment and recovery of the PMMA grafts, through methanolysis, DOSY NMR was used to determine the average self-diffusion coefficient and, hence, molecular weight of the grafts compared to self-diffusion coefficients for PMMA GPC standards. This finally led to a calculation of both graft length and graft density using liquid-state NMR techniques. In addition, it was possible to discriminate between triads and tetrads, associated with PMMA tacticity, of the PMMA still attached to the CNCs (before methanolysis). CNC reducing end and sulfate half ester resonances, from sulfuric acid hydrolysis, were also assignable. Furthermore, other biopolymers, such as hemicelluloses and proteins (silk and wool), were found to be soluble in the electrolyte media, allowing for wider application of this method beyond just cellulose analytics.Peer reviewe

    aMMP-8 Point-of-Care/Chairside Oral Fluid Technology as a Rapid, Non-Invasive Tool for Periodontitis and Peri-Implantitis Screening in a Medical Care Setting

    Get PDF
    This communication article addresses currently available rapid non-invasive methods to screen and detect periodontitis and dental peri-implantitis. In this regard, oral fluid biomarkers have been researched extensively but self-reported oral health (SROH)-questionnaires have also been developed. Both alternatives may offer a quick and easy way to screen and detect diseased patients. Active matrix metalloproteinase (aMMP-8) is one of the most validated biomarkers for screening and detecting periodontal breakdown related to periodontitis and peri-implantitis and monitoring their treatment effects revealing successful, less- and non-successful treatment results. Currently available aMMP-8 lateral-flow technologies allow this kind of analysis, as demonstrated here, to be conducted quantitatively online and real-time as point-of-care/chairside testing in dental and even medical care settings. In this study, an aMMP-8 peri-implant sulcular fluid point-of-care-test diagnosed peri-implantitis and healthy implants far more accurately than bleeding-on-probing or the other biomarkers, such as polymorphonuclear (PMN)/neutrophil elastase, myeloperoxidase and MMP-9. Although, SROH-questionnaires allow screening in similar settings but they lack the information about the current disease activity of periodontitis and peri-implantitis, which is of essential value in periodontal diagnostics and treatment monitoring. Thus, both methods can be considered as adjunct methods for periodontitis and peri-implant diagnostics, but the value of oral fluid biomarkers analysis does not seem to be substitutable.Peer reviewe
    • …
    corecore