2,332 research outputs found

    Microkelvin thermometry with Bose-Einstein condensates of magnons and applications to studies of the AB interface in superfluid 3^3He

    Full text link
    Coherent precession of trapped Bose-Einstein condensates of magnons is a sensitive probe for magnetic relaxation processes in superfluid 3He-B down to the lowest achievable temperatures. We use the dependence of the relaxation rate on the density of thermal quasiparticles to implement thermometry in 3He-B at temperatures below 300 μ\muK. Unlike popular vibrating wire or quartz tuning fork based thermometers, magnon condensates allow for contactless temperature measurement and make possible an independent in situ determination of the residual zero-temperature relaxation provided by the radiation damping. We use this magnon-condensate-based thermometry to study the thermal impedance of the interface between A and B phases of superfluid 3He. The magnon condensate is also a sensitive probe of the orbital order-parameter texture. This has allowed us to observe for the first time the non-thermal signature of the annihilation of two AB interfaces.Comment: 26 pages, 7 figures, manuscript prepared for EU Microkelvin Collaboration Workshop 2013. Accepted for publication in Journal of Low Temperature Physic

    Soil carbon stock increases in the organic layer of boreal middle-aged stands

    Get PDF
    Changes in the soil carbon stock can potentially have a large influence on global carbon balance between terrestrial ecosystems and atmosphere. Since carbon sequestration of forest soils is influenced by human activities, reporting of the soil carbon pool is a compulsory part of the national greenhouse gas (GHG) inventories. Various soil carbon models are applied in GHG inventories, however, the verification of model-based estimates is lacking. In general, the soil carbon models predict accumulation of soil carbon in the middle-aged stands, which is in good agreement with chronosequence studies and flux measurements of eddy sites, but they have not been widely tested with repeated measurements of permanent plots. The objective of this study was to evaluate soil carbon changes in the organic layer of boreal middle-aged forest stands. Soil carbon changes on re-measured sites were analyzed by using soil survey data that was based on composite samples as a first measurement and by taking into account spatial variation on the basis of the second measurement. By utilizing earlier soil surveys, a long sampling interval, which helps detection of slow changes, could be readily available. <br><br> The range of measured change in the soil organic layer varied from −260 to 1260 g m<sup>−2</sup> over the study period of 16–19 years and 23 ± 2 g m<sup>−2</sup> per year, on average. The increase was significant in 6 out of the 38 plots from which data were available. Although the soil carbon change was difficult to detect at the plot scale, the overall increase measured across the middle-aged stands agrees with predictions of the commonly applied soil models. Further verification of the soil models is needed with larger datasets that cover wider geographical area and represent all age classes, especially young stands with potentially large soil carbon source

    Turbulent Vortex Flow Responses at the AB Interface in Rotating Superfluid 3He-B

    Full text link
    In a rotating two-phase sample of 3He-B and magnetic-field stabilized 3He-A the large difference in mutual friction dissipation at 0.20 Tc gives rise to unusual vortex flow responses. We use noninvasive NMR techniques to monitor spin down and spin up of the B-phase superfluid component to a sudden change in the rotation velocity. Compared to measurements at low field with no A-phase, where these responses are laminar in cylindrically symmetric flow, spin down with vortices extending across the AB interface is found to be faster, indicating enhanced dissipation from turbulence. Spin up in turn is slower, owing to rapid annihilation of remanent vortices before the rotation increase. As confirmed by both our NMR signal analysis and vortex filament calculations, these observations are explained by the additional force acting on the B-phase vortex ends at the AB interface.Comment: 6 pages, 6 figure

    Fluorescence measurements show stronger cold inhibition of photosynthetic light reactions in Scots pine compared to Norway spruce as well as during spring compared to autumn

    Get PDF
    We studied the photosynthetic activity of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst) in relation to air temperature changes from March 2013 to February 2014. We measured the chlorophyll fluorescence of approximately 50 trees of each species growing in southern Finland. Fluorescence was measured 13 times per week. We began by measuring shoots present in late winter (i.e., March 2013) before including new shoots once they started to elongate in spring. By July, when the spring shoots had achieved similar fluorescence levels to the older ones, we proceeded to measure the new shoots only.We analysed the data by fitting a sigmoidal model containing four parameters to link sliding averages of temperature and fluorescence. A parameter defining the temperature range over which predicted fluorescence increased most rapidly was the most informative with in describing temperature dependence of fluorescence.The model generated similar fluorescence patterns for both species, but differences were observed for critical temperature and needle age. Down regulation of the light reaction was stronger in spring than in autumn. Pine showed more conservative control of the photosynthetic light reactions, which were activated later in spring and more readily attenuated in autumn. Under the assumption of a close correlation of fluorescence and photosynthesis, spruce should therefore benefit more than pine from the increased photosynthetic potential during warmer springs, but be more likely to suffer frost damage with a sudden cooling following a warm period. The winter of 20132014 was unusually mild and similar to future conditions predicted by global warming models. During the mild winter, the activity of photosynthetic light reactions of both conifers, especially spruce, remained high. Because light levels during winter are too low for photosynthesis, this activity may translate to a net carbon loss due to respiration

    Nanoelectronic thermometers optimised for sub-10 millikelvin operation

    Get PDF
    We report the cooling of electrons in nanoelectronic Coulomb blockade thermometers below 4 mK. Above 7 mK the devices are in good thermal contact with the environment, well isolated from electrical noise, and not susceptible to self-heating. This is attributed to an optimised design that incorporates cooling fins with a high electron-phonon coupling and on-chip electronic filters, combined with a low-noise electronic measurement setup. Below 7 mK the electron temperature is seen to diverge from the ambient temperature. By immersing a Coulomb Blockade Thermometer in the 3He/4He refrigerant of a dilution refrigerator, we measure a lowest electron temperature of 3.7 mK.Comment: 11 pages, 4 figures. (Fixed fitted saturation T_e on p9

    Super Stability of Laminar Vortex Flow in Superfluid 3He-B

    Full text link
    Vortex flow remains laminar up to large Reynolds numbers (Re~1000) in a cylinder filled with 3He-B. This is inferred from NMR measurements and numerical vortex filament calculations where we study the spin up and spin down responses of the superfluid component, after a sudden change in rotation velocity. In normal fluids and in superfluid 4He these responses are turbulent. In 3He-B the vortex core radius is much larger which reduces both surface pinning and vortex reconnections, the phenomena, which enhance vortex bending and the creation of turbulent tangles. Thus the origin for the greater stability of vortex flow in 3He-B is a quantum phenomenon. Only large flow perturbations are found to make the responses turbulent, such as the walls of a cubic container or the presence of invasive measuring probes inside the container.Comment: 4 pages, 6 figure

    Achieving equity through 'gender autonomy': the challenges for VET policy and practice

    Get PDF
    This paper is based on research carried out in an EU Fifth Framework project on 'Gender and Qualification'. The research partners from five European countries investigated the impact of gender segregation in European labour markets on vocational education and training, with particular regard to competences and qualifications. The research explored the part played by gender in the vocational education and training experiences of (i) young adults entering specific occupations in child care, electrical engineering and food preparation/service (ii) adults changing occupations

    Superfluid vortex front at T -> 0: Decoupling from the reference frame

    Full text link
    Steady-state turbulent motion is created in superfluid 3He-B at low temperatures in the form of a turbulent vortex front, which moves axially along a rotating cylindrical container of 3He-B and replaces vortex-free flow with vortex lines at constant density. We present the first measurements on the thermal signal from dissipation as a function of time, recorded at 0.2 Tc during the front motion, which is monitored using NMR techniques. Both the measurements and the numerical calculations of the vortex dynamics show that at low temperatures the density of the propagating vortices falls well below the equilibrium value, i.e. the superfluid rotates at a smaller angular velocity than the container. This is the first evidence for the decoupling of the superfluid from the container reference frame in the zero-temperature limit.Comment: 4 pages, 4 figure
    corecore