70 research outputs found

    Effects of Epinephrine and Phenylephrine on QT Interval Dispersion in Congenital Long QT Syndrome 11This study was supported by a grant from the Finnish Cardiac Research Foundation, Helsinki.

    Get PDF
    AbstractObjectives. Measurement of QT interval dispersion during pharmacologic adrenergic stimulation was used to assess the effect of alpha- and beta-adrenergic stimulation on arrhythmic vulnerability in familial long QT syndrome (LQTS).Background. Nonhomogeneity in the ventricular action potential duration causes electrical instability leading to life-threatening ventricular arrhythmias and is markedly increased in LQTS. QT interval dispersion measured from the electrocardiogram (ECG) can be used as an index of nonhomogeneous ventricular repolarization.Methods. Sixteen symptomatic patients with LQTS and nine healthy control subjects were examined at baseline and during epinephrine (mainly beta-adrenergic agonist, 0.05 μg/kg body weight per min) and phenylephrine infusions (alpha-adrenergic agonist, mean 1.4 μg/kg per min). QT interval dispersion was determined from a 12-lead ECG as interlead range and coefficient of variation measured to the end (QTend) and apex (QTapex) of the T wave.Results. At baseline QTenddispersion was greater in patients with LQTS compared with control subjects (mean [±SD] 68 ± 34 vs. 36 ± 7 ms, p = 0.001). QTenddispersion was markedly increased in patients with LQTS by use of epinephrine (from 68 ± 34 to 90 ± 36 ms, p = 0.002), but remained unchanged in control subjects. Phenylephrine did not affect QT dispersion in either group (all p = NS). Atrial pacing to achieve comparable heart rates during baseline and epinephrine and phenylephrine infusions did not influence the magnitude of QT dispersion in either group. QTapexdispersion analysis gave congruent results.Conclusions. Epinephrine but not phenylephrine increased QT dispersion, suggesting that beta-adrenergic stimulation provokes arrhythmias in patients with LQTS by aggravating nonhomogeneity of ventricular repolarization, whereas alpha-adrenergic stimulation is less important for arrhythmic vulnerability. The results also suggest that rapid pacing may not reduce vulnerability to arrhythmias in congenital LQTS

    The role of KCNQ1 mutations and maternal beta blocker use during pregnancy in the growth of children with long QT syndrome

    Get PDF
    Synnynnäinen ionikanavasairaus pitkä QT -oireyhtymä (long QT syndrome, LQTS) on perinnöllinen hengen-vaarallisia rytmihäiriöitä aiheuttava sairaus. LQTS johtuu sydänlihassolujen ionikanavien rakenteita koodaa-vien geenien mutaatioista. Yleisimmät mutaatiot ovat KCNQ1-geenissä, ja ne aiheuttavat sairauden alamuo-don LQT1. KCNQ1 sijaitsee kromosomin 11p15.5 leimautuneella alueella, ja se koodittaa jänniteriippuvaista kaliumkanavaa, Kv7.1:a. Kaksi KCNQ1:n aktivoivaa mutaatiota aiheuttavat autosomaalisesti dominantisti periytyvän kasvuhormonin vajauksen ja äidiltä perittynä ienfibromatoosin. Tutkimuksen tarkoituksena oli analysoida LQTS -potilaiden, joilla on toiminnan hävittävä mutaatio (loss-of-function mutaatio) KCNQ1-geenissä, kasvua ja endokriinisia ominaisuuksia. Keskityimme erityisesti varhaisen kasvun ja parent-of-origin -mutaation suhteeseen. Tutkimuksessa analysoitiin LQT1-potilaiden (n=104) syntymäpituutta ja -painoa, syntymän jälkeistä kasvua ensimmäisen vuoden osalta sekä potilaiden endokriinisia ominaisuuksia. Tutkimuksessa havaittiin, että poti-laat, jotka olivat perineet KCNQ1-mutaation äidiltään, olivat syntymässä lyhyempiä kuin potilaat, jotka olivat perineet mutaation isältään. Jatkoanalyysit osoittivat, että vain potilaat, joiden äidit olivat saaneet beetasal-paajaa raskaana ollessaan, olivat lyhyempiä ja kevyempiä kuin ne potilaat, jotka olivat perineet mutaation isältään. Äidin beetasalpaajan käyttö raskauden aikana oli myös yhteydessä matalampiin napa-TSH-pitoisuuksiin sekä merkittävään saavutuskasvuun ensimmäisen elinvuoden aikana. Myöhemmin eroa ei ha-vaittu. Tutkimuksemme mukaan KCNQ1:n loss-of-function -mutaatiot eivät ole yhteydessä epänormaaliin kasvuun. Sen sijaan analyysiemme mukaan äidin raskauden aikainen beetasalpaajan käyttö näyttää rajoittavan ras-kaudenaikaista LQT1-potilaiden kasvua, mitä seuraa nopea saavutuskasvu ensimmäisen elinvuoden aikaan

    Antiarrhythmic Effects of Dantrolene in Patients with Catecholaminergic Polymorphic Ventricular Tachycardia and Replication of the Responses Using iPSC Models

    Get PDF
    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly malignant inherited arrhythmogenic disorder. Type 1 CPVT (CPVT1) is caused by cardiac ryanodine receptor (RyR2) gene mutations resulting in abnormal calcium release from sarcoplasmic reticulum. Dantrolene, an inhibitor of sarcoplasmic Ca2+ release, has been shown to rescue this abnormal Ca2+ release in vitro. We assessed the antiarrhythmic efficacy of dantrolene in six patients carrying various RyR2 mutations causing CPVT. The patients underwent exercise stress test before and after dantrolene infusion. Dantrolene reduced the number of premature ventricular complexes (PVCs) on average by 74% (range 33-97) in four patients with N-terminal or central mutations in the cytosolic region of the RyR2 protein, while dantrolene had no effect in two patients with mutations in or near the transmembrane domain. Induced pluripotent stem cells (iPSCs) were generated from all the patients and differentiated into spontaneously beating cardiomyocytes (CMs). The antiarrhythmic effect of dantrolene was studied in CMs after adrenaline stimulation by Ca2+ imaging. In iPSC derived CMs with RyR2 mutations in the N-terminal or central region, dantrolene suppressed the Ca2+ cycling abnormalities in 80% (range 65-97) of cells while with mutations in or near the transmembrane domain only in 23 or 32% of cells. In conclusion, we demonstrate that dantrolene given intravenously shows antiarrhythmic effects in a portion of CPVT1 patients and that iPSC derived CM models replicate these individual drug responses. These findings illustrate the potential of iPSC models to individualize drug therapy of inherited diseases.Peer reviewe

    Effects of cardioactive drugs on human induced pluripotent stem cell derived long QT syndrome cardiomyocytes

    Get PDF
    Human induced pluripotent stem cells (hiPSC) have enabled a major step forward in pathophysiologic studies of inherited diseases and may also prove to be valuable in in vitro drug testing. Long QT syndrome (LQTS), characterized by prolonged cardiac repolarization and risk of sudden death, may be inherited or result from adverse drug effects. Using a microelectrode array platform, we investigated the effects of six different drugs on the electrophysiological characteristics of human embryonic stem cell-derived cardiomyocytes as well as hiPSC-derived cardiomyocytes from control subjects and from patients with type 1 (LQT1) and type 2 (LQT2) of LQTS. At baseline the repolarization time was significantly longer in LQTS cells compared to controls. Isoprenaline increased the beating rate of all cell lines by 10-73 % but did not show any arrhythmic effects in any cell type. Different QT-interval prolonging drugs caused prolongation of cardiac repolarization by 3-13 % (cisapride), 10-20 % (erythromycin), 8-23 % (sotalol), 16-42 % (quinidine) and 12-27 % (E-4031), but we did not find any systematic differences in sensitivity between the control, LQT1 and LQT2 cell lines. Sotalol, quinidine and E-4031 also caused arrhythmic beats and beating arrests in some cases. In summary, the drug effects on these patient-specific cardiomyocytes appear to recapitulate clinical observations and provide further evidence that these cells can be applied for in vitro drug testing to probe their vulnerability to arrhythmia.Peer reviewe

    Search for cardiac calcium cycling gene mutations in familial ventricular arrhythmias resembling catecholaminergic polymorphic ventricular tachycardia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a severe inherited cardiac disorder caused by mutations predominantly in the ryanodine receptor (<it>RyR2</it>) gene. We sought to identify mutations in genes affecting cardiac calcium cycling in patients with CPVT and in less typical familial exercise-related ventricular arrhythmias.</p> <p>Methods and Results</p> <p>We recruited 33 consecutive patients with frequent ventricular premature complexes (VPCs) without structural heart disease and often history of syncope or sudden death in family. Sixteen of the patients featured a phenotype typical of CPVT. In 17 patients, VPCs emerged also at rest. Exercise stress test and echocardiography were performed to each patient and 232 family members. Familial background was evident in 42% of cases (n = 14). We sequenced all the coding exons of the <it>RyR2</it>, <it>FKBP1B</it>, <it>ATP2A2 </it>and <it>SLC8A1 </it>genes from the index patients. Single channel recordings of a mutant RyR2 were performed in planar lipid bilayers. Two novel <it>RyR2 </it>missense mutations (R1051P and S616L) and two <it>RyR2 </it>exon 3 deletions were identified, explaining 25% of the CPVT phenotypes. A rare variant (N3308S) with open probabilities similar to the wild type channels <it>in vitro</it>, was evident in a patient with resting VPCs. No disease-causing variants were detectable in the <it>FKBP1B</it>, <it>ATP2A2 </it>or <it>SLC8A1 </it>genes.</p> <p>Conclusion</p> <p>We report two novel CPVT-causing <it>RyR2 </it>mutations and a novel <it>RyR2 </it>variant of uncertain clinical significance in a patient with abundant resting VPCs. Our data also strengthen the previous assumption that exon 3 deletions of <it>RyR2 </it>should screened for in CPVT and related phenotypes.</p

    Clinical and molecular genetic risk determinants in adult long QT syndrome type 1 and 2 patients

    Get PDF
    Background: Long QT syndrome (LQTS) is an inherited cardiac disorder predisposing to sudden cardiac death (SCD). We studied factors affecting the clinical course of genetically confirmed patients, in particular those not receiving beta-blocker treatment. In addition, an attempt was made to associate risk of events to specific types of KCNQ1 and KCNH2 mutations. Methods: A follow-up study covering a mean of 18.6 +/- 6.1 years was conducted in 867 genetically confirmed LQT1 and LQT2 patients and 654 non-carrier relatives aged 18-40 years. Cox regression models were used to evaluate the contribution of clinical and genetic risk factors to cardiac events. Results: In mutation carriers, risk factors for cardiac events before initiation of beta-blocker included LQT2 genotype (hazard ratio [HR] = 2.1, p = 0.002), female gender (HR = 3.2, p = 500 ms (vs G and other KCNQ1 mutation carriers after adjusting for gender, QTc duration, and cardiac events before age 18. KCNH2 c. 453delC, L552S and R176W mutations associated with lower risk (HR = 0.11-0.23, p <0.001) than other KCNH2 mutations. Conclusions: LQT2 (compared to LQT1), female gender, a cardiac event before age 18, and long QT interval increased the risk of cardiac events in LQTS patients aged 18 to 40 years. The nature of the underlying mutation may be associated with risk variation in both LQT1 and LQT2. The identification of high-risk and low-risk mutations may enhance risk stratification.Peer reviewe

    Heart Rate Recovery After Exercise Is Associated With Arrhythmic Events in Patients With Catecholaminergic Polymorphic Ventricular Tachycardia

    Get PDF
    BACKGROUND: Risk stratification in catecholaminergic polymorphic ventricular tachycardia remains ill defined. Heart rate recovery (HRR) immediately after exercise is regulated by autonomic reflexes, particularly vagal tone, and may be associated with symptoms and ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. Our objective was to evaluate whether HRR after maximal exercise on the exercise stress test (EST) is associated with symptoms and ventricular arrhythmias. METHODS: In this retrospective observational study, we included patients ≤65 years of age with an EST without antiarrhythmic drugs who attained at least 80% of their age- and sex-predicted maximal HR. HRR in the recovery phase was calculated as the difference in heart rate (HR) at maximal exercise and at 1 minute in the recovery phase (ΔHRR1'). RESULTS: We included 187 patients (median age, 36 years; 68 [36%] symptomatic before diagnosis). Pre-EST HR and maximal HR were equal among symptomatic and asymptomatic patients. Patients who were symptomatic before diagnosis had a greater ΔHRR1' after maximal exercise (43 [interquartile range, 25-58] versus 25 [interquartile range, 19-34] beats/min; P<0.001). Corrected for age, sex, and relatedness, patients in the upper tertile for ΔHRR1' had an odds ratio of 3.4 (95% CI, 1.6-7.4) of being symptomatic before diagnosis (P<0.001). In addition, ΔHRR1' was higher in patients with complex ventricular arrhythmias at EST off antiarrhythmic drugs (33 [interquartile range, 22-48] versus 27 [interquartile range, 20-36] beats/min; P=0.01). After diagnosis, patients with a ΔHRR1' in the upper tertile of its distribution had significantly more arrhythmic events as compared with patients in the other tertiles (P=0.045). CONCLUSIONS: Catecholaminergic polymorphic ventricular tachycardia patients with a larger HRR following exercise are more likely to be symptomatic and have complex ventricular arrhythmias during the first EST off antiarrhythmic drug
    corecore