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1. INTRODUCTION

Unraveling the cause of syncopal spell in an young individual with apparently normal

heart has turned into a challenge of clinical cardiology and molecular genetics at the

dawn of the 21st century. The stakes are the risk of death of the symptomatic individual

and, ever since the recognition of the genetic nature of these diseases, even his or her

relatives.

In  adult population, the majority of sudden deaths is related to coronary heart disease

and its consequences. Although the cardiac deaths make up only a small proportion of all

causes of deaths in children, adolescents and young adults under the age of 35 years,

sudden cardiac deaths occur in the absence of any apparent heart disease, sometimes in

families with a history of a previous sudden death at young age.

From the 1950’s, it has been recognized that there are cardiac disorders for which the

only symptoms are disturbances of heart rhythm without any signs of structural

alterations of the heart whatsoever. The presence of a prolonged repolarization time on

an electrocardiogram, the QT interval, was first related to propensity to sudden cardiac

death in a mute individual (Jervell and Lange-Nielsen 1957). A few years later, it became

apparent that stress could provoke syncopal spells even in people with long QT interval

but with normal hearing (Romano et al. 1963, Ward 1964).

While the number of identified individuals with this novel long QT syndrome, LQTS, was

increasing, a claim on separating this congenital disorder from the acquired form was

presented in 1975 (Schwartz et al. 1975). Indeed, there had been reports presenting

cases with similar manifestations with syncopal spells, even sudden death and long QT

interval upon some concomitant pharmacological agents and interestingly, without any

known stress factor provoking those arrhythmias.
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Since the triggering factor for the cardiac events often was adrenergic stimulus, theories

about the pathogenesis of the LQTS started to be based on abnormalities in the

sympathetic nervous system (Schwartz 1985). Until 1994, the sympathetic imbalance

theory was frequently quoted and even used as the rationale for therapy of LQTS.

The discovery of the first three genes underlying the LQTS (Curran et al. 1995, Wang et

al. 1996, Wang et al. 1996) solved the mystery of LQTS: it is a cardiac ion channel

disorder. Its congenital form originates from ion channel gene defects and the acquired

form from other factors disturbing the ion channel function. Knowledge on ion channel

function, development of specific therapy and genetic testing would now become

possible. After the identification of the LQTS caused by mutations in the potassium

channel α-subunits KvLQT1 (also known as KCNQ1) and HERG, and the sodium

channel gene SCN5A, additional ion channel genes underlying the syndrome have been

discovered: those encoding for the cardiac potassium channel β-subunits minK (KCNE1)

(Splawski et al. 1997) and MiRP1 (KCNE2) (Abbott et al. 1999). The number of genes

is still likely to increase.

The spectrum of LQTS became much wider than thought as soon as the numerous

carriers of ion channel defects were shown to exhibit normal ECG in families with an

identified gene defect (Vincent et al. 1992). It thus became apparent that if genetic

diagnosis was not yet available in a family, there could be members with normal ECG

who were mutation carriers. Taken together with the existence of other life-threatening

arrhythmogenic disorders in apparently normal hearts, the identification of these people

and differential diagnosis remains a challenge for clinical electrophysiology. Its methods

are now being developed in intimate collaboration with the discoveries of molecular

genetics.
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2. REVIEW OF LITERATURE

2.1. General features of congenital long QT syndrome

Congenital long QT syndrome is characterized by the prolongation of the QT interval

associated with syncopal spells due to ventricular arrhythmias. Typically, these

arrhythmias occur in conjunction of vigorous physical exercise or emotional stress. These

arrhythmias are potentially fatal and high mortality figures have been presented. The

initial figures of mortality were high due to the identification of most severely affected

patients only. Mortality of untreated symptomatic patients first reported 71 %, and 20 %

of patients with beta blocker treatment continue to have symptoms (Schwartz 1985).

Reported high mortality in patients with other than antiadrenergic treatment has been

likely to diminish the use of other antiarrhythmic drugs in treatment of LQTS patients

(Schwartz 1985). Patients with Jervell and Lange-Nielsen syndrome, i.e. homozygous

LQT1 patients possess the highest risk of cardiac events (Moss et al. 1985).

2.2. QT interval duration

QT interval prolongation is the main diagnostic feature of the LQTS, included as one of

the major diagnostic criteria for the syndrome (Schwartz 1985, Schwartz et al. 1993).

However, as soon as the first genetic linkage analyses were carried out, it was shown

that a substantial proportion of LQTS (LQT1) patients had QTc intervals similar to their

healthy relatives (Vincent et al. 1992). In that study it was shown that 5 % of LQT1

patients had QTc < 440 ms and that in 60 % of cases, the QTc interval was insufficient

to separate the carriers from non-carriers.

Mutation site in each LQTS gene plays a role in the degree of QT interval prolongation;

within KvLQT1 and HERG genes mutations in C-terminal end have been shown to

prolong the QT interval less than mutations in pore region of these genes (Donger et al.

1997, Neyroud et al. 1998, Berthet et al. 1999). Despite the location of the mutation in
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the pore region of a ion channel gene, there is still considerable overlap of QT intervals

between mutation carriers and non-carriers (Saarinen et al. 1998).

2.3. Morphology of T -wave

Moss et al. (Moss et al. 1995) in 1995 showed genotype-specific T-wave patterns in

LQT1, LQT2 and LQT3. LQT1 is characterized by the longest duration of the T -wave

(from the beginning of T onset to the end of the T -wave), with a T-wave amplitude

similar to that in LQT3. In LQT2, the typical T-wave pattern is of low amplitude and T-

wave duration in leads II and V5 is shorter than in LQT1. Late-appearing T -waves of

short duration are common in LQT3 whereas a T -wave usually is broad based and

prolonged in LQT1 and LQT2 patients (Moss et al. 1995).

The mechanism of a late onset T -wave with short duration, similar to that encountered

in LQT3 type of LQTS, has also been produced experimentally by ATX-II, an inhibitor

of sodium channel SCN5A. It prolongs the action potential in epicardial and endocardial

layers and is capable of delaying the onset of T -wave, as seen in the congenital LQT3

subtype of LQTS (Shimizu and Antzelevitch 1997). Thus, the ECG morphological

features of repolarization may have specific underlying molecular mechanisms, but the

clinical utility of these characteristics remains to be studied in large unselected LQTS

populations.

Thus far, the prevalence of morphological T -wave abnormalities have been studied in

genetically undefined LQTS populations in which diagnosis has been based on QT

interval prolongation and/or symptoms (Lehmann et al. 1994, Malfatto et al. 1994).

Malfatto et al. studied 53 LQTS patients and 53 controls. All LQTS patients had QTc >

440 ms whereas QTc of controls was < 440 ms. A biphasic of notched T -waves was

found in 61 % of LQTS patients above the age of 15 and in 63 % under the age of 15

years. In controls, the corresponding figures were 23 % and 0 % (Malfatto et al. 1994).

Lehmann et al. compared the prevalence of T -wave humps (double peaked T -wave,

second peak termed as T2) in 254 family members of 13 clinically diagnosed LQTS

families to that in over 2,900 healthy control subjects (Lehmann et al. 1994). Prevalence
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was studied separately in LQTS family members according to the QTc classification

(prolonged QTc >470, borderline > 420 but < 460 or normal < 410 ms). T2 was found in

27 % of all blood relatives, 2 % of spouses and 1.5 % of healthy controls. Of those blood

relatives with QTc > 470 ms, T2 was present in 53 % but only in 16 % of those with

QTc < 460 ms. T2 was observed in any of the leads V4-6 or limb leads in 24 % of all

blood relatives, and it was confined to leads V2 or V3 in only 2.9 % of cases. In control

subjects, the corresponding figures were 0.9 % and 0.6 %. Thus, when the QT interval in

a family member of LQTS patient is equivocal, the presence of T2 (even when relatively

subtle) in limb leads or leads V4-6 seems to be highly suggestive of LQTS. However,

since the true number of LQTS gene carriers in the group with normal or borderline QTc

was unknown, it is not possible to estimate the sensitivity of T2 as a marker of LQTS in

standard ECG -recordings.

In addition, complexity of repolarization has been measured from the 24-hour

ambulatory ECG recordings. Principal component analysis can quantify T-wave

abnormalities encountered in LQTS, but its performance in identifying LQTS gene

carriers from healthy relatives has not been studied (Priori et al. 1997).

2.4. Duration and characteristics of action potentials

Transmembrane ion fluxes are responsible for voltage changes during electric activation

and recovery of myocardial tissue. Cardiac action potential is the cellular counterpart of

body surface ECG and it can be directly measured from myocardial surface. Duration of

human cardiac action potential is dependent on heart rate; premature excitation shortens

it and the longer the cycle length is, the longer the action potential duration (Franz et al.

1983). Monophasic action potential (MAP) duration at 90% repolarization reflects the

QT interval of surface ECG (Franz et al. 1987). Its duration is inversely related to

activation time, i.e. areas which activate later have shorter action potentials and vice

versa (Cowan et al. 1988). The duration of action potential also shows regional

heterogeneity both at endocardial and epicardial surface (Franz et al. 1987, Cowan et al.

1988). Of the transmural layers of myocardium, epicardial cells possess the shortest

duration of action potential. The end of action potential of epicardial cells coincides with
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the peak of T -wave, whereas the end of the T -wave is coincident with action potential

duration of M cells. Duration of action potential in endocardial cells is intermediate to

these two layers (Shimizu and Antzelevitch 1997). Rate dependency and shortening of

cardiac action potential by increasing heart rates has also been demonstrated in clinically

diagnosed LQTS patients in which MAP remains longer than in controls (Hirao et al.

1996). In addition, morphological alterations in LQTS patients (humps at phase 3 of

repolarization) in MAP has been demonstrated (Bonatti et al. 1985).

2.5. Rate dependency of action potentials and QT interval duration

The relationship between action potential duration and heart rate has been studied both

in cell models and in canine myocardial preparations mimicking LQTS subtypes. For in

vitro cell models of LQT2 and LQT3, dofetilide and anthopleurin have been used to

block rapid outward potassium current IKr and outward sodium current INa, respectively.

These studies showed that increase in pacing rate shortened duration of action potential

more in LQT2 model than in control cells and more in LQT3 model than in LQT2 model

(Priori et al. 1996). Shimizu et al. created canine ventricular myocardium preparation

models for LQTS using d-sotalol, which inhibits the IKr and ATX-II for inhibition of the

fast sodium channel to mimic the LQT2 and LQT3 subtypes (Shimizu and Antzelevitch

1997). Steeper rate dependence of action potential duration was observed in LQT2 and

LQT3 than in controls and furthermore, steeper rate dependence in LQT3 than in LQT2

model (Shimizu and Antzelevitch 1997).

Vincent et al. (Vincent 1986) demonstrated in vivo that the absolute QT interval duration

in LQTS (later shown to represent LQT1) patients shortened as long as their heart rate

increased. However, the maximal heart rate at the final stage of the exercise remained

lower and concomitantly with that, the QT interval was longer than in controls.

A study in genetically defined LQTS patient cohorts has shown that QT interval rate

dependence is steeper in LQT3 patients than in LQT2 patients or healthy population

(Schwartz et al. 1995) but the number of studied patients was very small, only four

patients with LQT2 type of LQTS.
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In ambulatory ECG recordings, Neyroud et al demonstrated that the QT rate dependence

was steeper in LQT1 patients than in controls (Neyroud et al. 1998). Classification of

LQT1 patients and healthy age- and gender matched controls based on a Holter model

constituting of different QT/RR interval slope parameters resulted in 96 % specificity and

88 % sensitivity, thereby misclassifying 14% of the study subjects. When QTc parameter

was taken into account together with Holter parameters, only 4% of study subjects were

misclassified (Neyroud et al. 1998). It is of note, however, that only LQT1 patients were

studied and no healthy relatives were included in the control group.

2.6. T-wave alternans

Macroscopic alternation of T -wave configuration has been observed in molecularly

undefined LQTS patients (Schwartz and Malliani 1975, Sharma et al. 1981). It is

associated with the extent of spatial dispersion of repolarization (Chinushi et al. 1998).

Patients with T -wave alternans have an increased risk of cardiac events as T -wave

alternans may preceed the onset of torsades de pointes tachycardia (Schwartz and

Malliani 1975). However, the risk is primarily related to the magnitude of QTc

prolongation and T -wave alternans does not make an independent contribution to the

risk of cardiac events (Zareba et al. 1994).

2.7. Heart rate and heart rate variability

Intrauterine and neonatal bradycardia is occasionally encountered in LQTS carriers (for

review, see (Gorgels et al. 1998)). This is probably related to the most severe forms of

LQTS like the homozygous carrier state. In newborns and children up to the age of 3

years with genetically undefined LQTS, the resting heart rate was found lower than in

healthy controls (mean difference approximately 20 beats min-1). However, in older

children and adolescents, no difference in heart rate was observed (Vincent 1986). In

heart rate variability parameters, no differences have been observed in LQT1 patients and

age- and gender matched controls (Neyroud et al. 1998). So far, heart rate variability has

not been studied in LQT2 and LQT3 patients.
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2.8. Occurrence of arrhythmias as diagnostic feature of LQTS

Provocation of ventricular premature complexes on exercise stress testing has been

considered a feature of LQTS, although not common, (Weintraub et al. 1990) and to be

one of the factors associated with a high risk of syncope or sudden death (Moss et al.

1985). The incidence of ventricular premature complexes during exercise in LQTS

patients has not been widely assessed since the number of reports in which exercise stress

tests has been systematically performed is small. In pediatric populations, Garson et al.

reported a 30 % incidence of ventricular arrhythmias in children during an exercise stress

test (Garson et al. 1993). However, 12 % of these children had also another congenital

heart disease (Garson et al. 1993). Since ventricular arrhythmias cannot be provoked in

the majority of LQTS patients, reproducible appearance of such arrhythmias during

exercise (test) should raise consideration of other differential diagnostic alternatives as

well. In invasive electrophysiologic testing, programmed ventricular stimulation does not

induce sustained ventricular arrhythmias (Bhandari et al. 1985)

2.9. Triggers of symptoms

The majority of symptomatic LQT1 patients (71 %) have experienced syncopal spell or

cardiac arrest in conjunction with exercise, whereas the arrhythmias in 71 % of the cases

have occurred during sleep in LQT3 type of LQTS. LQT2 has been reported to represent

an intermediate form of these two including exercise as a triggering factor in only 16 %

of cases (Schwartz et al. 1997). Swimming appears as a significant risk factor for LQT1

but not for LQT2 (Ackerman et al. 1999, Moss et al. 1999, Laitinen et al. 2000, Piippo

et al. submitted). Symptoms occurring after auditory stimuli have been reported to

happen frequently in LQT2 (60 % of 15 symptomatic LQT2 patients) but this is not a

feature of LQT1 (0 out of 23 symptomatic LQT1 patients) (Wilde et al. 1999).

2.10. Response to catecholamines
Infusion of epinephrine prolonged QT interval and monophasic action potential duration

at 90 % level of repolarization (MAP90) duration and increased MAP90 dispersion in
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genetically unverified LQTS patients but not in healthy controls (Hirao et al. 1996). In

molecularly defined LQT1 patients, epinephrine caused a marked increase in monophasic

action potential duration and QT interval duration (mean difference with 0.1 mg/kg/min

epinephrine infusion was 46 ms), but only a minor change (a 12 ms increase) was

observed in QT interval duration and no changes in monophasic action potential duration

of healthy controls (Shimizu et al. 1998). Dispersion of monophasic action potential

duration is also increased by epinephrine in LQT1 patients (from 26+6 to 45+13 ms) but

not in healthy subjects (from 26+6 to 24+6 ms) (Shimizu et al. 1998). The adverse

effects of catecholamines on ventricular repolarization are thus shown in LQT1 subtype

of LQTS but remain unexamined in other LQTS subtypes. Epinephrine has also been

shown to induce torsades de pointes tachycardia in patients with congenital long QT

syndrome, as reviewed by Jackman et al. (Jackman et al. 1988), although the underlying

molecular defect has not been known and thus no conclusions about the vulnerability to

arrhythmias in different LQTS subtypes can be based on these findings.

2.11. Proposed diagnostic criteria for long QT syndrome

The early clinical observations of normal QTc’s and yet exercise related syncopal spells

occurring in members of LQTS families led to use of a scheme of diagnostic criteria.

First set of diagnostic criteria (Table 1) was proposed in 1985 (Schwartz 1985). The

cut-off point for normal QTc proposed in that review has been commonly used in

prognostic assessments (Moss et al. 1991) and in a number of other studies since then.

The apparent overlap of QT intervals in LQTS patients and healthy controls after the

first linkage studies resulted in development of new criteria (Table 2). These took into

account the extent of QT interval prolongation and tried to grade the likelihood of

symptoms being related to LQTS aimed to enhance the recognition of affected patients

(Schwartz et al. 1993). Proposed scoring system indicated the probability of LQTS in a

given individual (Schwartz et al. 1993). Zero or one point indicates low probability, 2-3

points intermediate and 4 or more points high probablity of LQTS.
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Since the publication of these criteria, they have been widely used as an inclusion

criterion for definite LQTS carrier status in clinical studies where the underlying disorder

have not been molecularly defined (Shimizu et al. 1995, Emori et al. 1997, Hofbeck et al.

1997, Krahn et al. 1997, Priori et al. 1997, Shah et al. 1997, Nakayma et al. 1998).

Table 1. Diagnostic criteria of LQTS (1985)

Major Minor

Prolonged QT interval (QTc > 440 ms) Congenital deafness

Stress-induced syncope Episodes of T -wave alternans

Family members with LQTS Low heart rate (in children)

Abnormal ventricular repolarization

Diagnosis of LQTS can be made in the presence of 2 major criteria or 1 major and 2 minor

criteria.

2.12. Prediction of symptoms

2.12.1. Duration of QT interval as a risk factor

In a study from 1980’s, QTc > 460 ms did not appear as the strongest independent risk

factor in the study by Moss et al. (Moss et al. 1985). Eight years later, the duration of

QTc interval was prospectively shown to be a predictor of cardiac events in a larger

patient cohort (Moss et al. 1991). In 1993, Garson et al. showed that in the non-

compliant (untreated) LQTS children of which 61 % were symptomatic at the time of

enrollment, the risk of sudden death increased linearly with the increase of QTc from

values below 440 ms to longer QTc intervals (Garson et al. 1993). The aforementioned

studies carried out once again in molecularly undefined cohorts have excluded LQTS

patients with the shortest (”normal”) QT intervals and possibly included non-carrier

relatives with QTc > 440 but below 470 ms. These studies therefore cannot tell the true

risk of LQTS patients with QTc intervals lower than the inclusion criteria used, and on

the other hand, results in a diluting effect at QTc intervals of 440-470 ms as many non-

carrier relatives are likely to be included in this group. The first study evaluating QTc as

a risk factor in molecularly defined LQTS patients showed that each 10 ms increase in
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Table 2. LQTS diagnostic criteria 1993.

Points

ECG findings *

A.  QTc #

    > 480 ms

     460-470 ms

     450 ms (in males)

B.  Torsade de pointes$

C.  T-wave alternans

D.  Notched T -wave in three leads

E.  Low heart rate for age§

3

2

1

2

1

1

0.5

Clinical history

A.  Syncope$

     With stress

     Without stress

B.  Congenital deafness

2

1

0.5

Family history (either A or B)

A.  Family members with definite LQTS#

B.  Unexplained sudden cardiac death below age 30 among immediate family

members

1

0.5

*In the absence of QT interval prolonging drugs or other conditions.

#QTc calculated by Bazett formula (Bazett 1920).

$Mutually exclusive.

§Resting heart rate below the second percentile for age (Davignon et al. 1979).

#Definite LQTS is defined by an LQTS score > 4.

QTc increase the risk of cardiac events by 6 %, independent of genotype (Zareba et al.

1998). Of all patients with QTc < 440 ms, 5-6 % had been symptomatic. However, the

number of mutation carriers with QTc < 440 ms was only 23 (Zareba et al. 1998).
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2.12.2. QT dispersion and risk of arrhythmias

QT dispersion is a measure of inhomogeneity of repolarization in ventricular myocardium

(Statters et al. 1994). It has been measured from surface ECG as the difference of the

longest and shortest QT intervals in any of the leads. In experimental models on tissue

preparations, dispersion of repolarization is defined as the difference in repolarization

time between M cells and epicardial cells (Shimizu and Antzelevitch 1997, Yan and

Antzelevitch 1998).

QT dispersion has been proposed to serve as an indicator of increased risk of arrhythmic

events (Statters et al. 1994). Thus far, QT dispersion has been studied only in a very

small number of clinically affected, untreated LQTS patients without genetic diagnosis.

Untreated LQTS patients had relative QT dispersion ((the standard deviation of

QT/mean QT) x 100) higher than any of the controls and beta-blocker non-responders

higher than those who remained asymptomatic during the treatment (Priori et al. 1994).

In addition, QT dispersion was found to be diminished after left cardiac sympathetic

denervation, upon which patients remained asymptomatic. These data suggest that

increased QT dispersion would indicate risk of arrhythmias in LQTS patients.

The possible quantitative differences in QT dispersion between different subtypes of

LQTS are unknown. Similarly, the utility of QT dispersion in homogenous patient

populations with different LQTS subtypes, as a risk marker of arrhythmias, have not yet

been studied.

2.13. Pharmacological interventions and risk of arrhythmias

Thus far, beta-antiadrenergic drugs have been the drugs of choice in reducing the risk of

arrhythmias in LQTS, especially propranolol. In LQT1, propranolol reverses the QT and

action potential duration prolonging effects of epinephrine (Shimizu et al. 1998), and

treatment with beta-blockers in molecularly undefined LQTS patients is associated with a

lower relative risk of syncope or cardiac death (Moss et al. 1985) but does not

completely abolish cardiac events in symptomatic LQTS patients (Moss et al. 2000).
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Preliminary results suggest, however, that beta-blockers are effective in preventing

cardiac events in LQT1 patients (Vincent et al. 1996).

Studies evaluating the effects of other drugs in LQTS are scanty and only experimental,

mostly in vitro. These studies utilize cell models, in which single channels have been

pharmacologically blocked. Examples of these are chromanol 293B which has been used

to block the slow outward potassium current IKs as a surrogate to LQT1 (Shimizu and

Antzelevitch 1998), dofetilide or d-sotalol to block IKr (HERG), and anthopleurin or

ATX-II to block INa.

In vivo, mexiletine has been shown to shorten QT interval in a small number of patients

(Schwartz et al. 1995). This QT shortening effect was reported specifically in LQT3 but

not in LQT2 patients. In that study, however, there was a large variation of QTc

intervals in LQT2 patients and only paired t-test was used for statistical testing in a small

number of patients. Therefore, the positive effects of mexiletine should be studied in

larger LQT2 cohorts because the in vitro studies have shown positive effects of

mexiletine on HERG channel function (Shimizu and Antzelevitch 1997) and it may thus

be beneficial in decreasing the risk of arrhythmias in LQT2 as well as in LQT3 patients.

In 1993, an evaluation of treatment and prognosis of 287 children showed that in the

small number of patients (n=12) treated with mexiletine, the incidence of symptoms was

not higher than in patients with propranolol (Garson et al. 1993).

IKr, which is impaired in LQT2 type of LQTS, is activated by an increase in serum

potassium. This phenomenon, which would seem to run counter to simple

electrochemical gradient considerations, is believed to result form effects of extracellular

potassium on HERG inactivation kinetics (Yang et al. 1997). Indeed, a reduction of QT

interval duration is obtained by acute administration of potassium in LQT2 patients

(Compton et al. 1996) and also in LQT1 patients (Swan et al. 1999). Theoretically, high-

potassium diet or drugs elevating the serum potassium level could thus be beneficial for

LQT1 and LQT2 patients.
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Nicorandil, a potassium channel opener, has been shown to reverse the effects of

epinephrine on action potential and QT interval duration and dispersion of monophasic

action potential duration in LQT1 patients (Shimizu et al. 1998). Propranolol, however,

resulted in more marked improvement in these parameters in the presence of epinephrine

(Shimizu et al. 1998).

2.14. Differential diagnosis of LQTS and other congenital arrhythmogenic cardiac

disorders

Hypertrophic cardiomyopathy, dilated cardiomyopathy, familial idiopathic ventricular

fibrillation, arrhythmogenic right ventricular dysplasia  and familial polymorphic

ventricular tachycardia are frequently associated with life-threatening ventricular

arrhythmias. Patients with hypertrophic cardiomyopathy and dilated cardiomyopathy also

often have moderate QT interval prolongation (Martin et al. 1994) which may mislead to

diagnosis of LQTS. Opposite to these conditions, QT interval is normal in familial

idiopathic ventricular fibrillation (Brugada syndrome) (Brugada and Brugada 1992) and

rarely prolonged in patients with right ventricular dysplasia (Martin et al. 1994). QT

interval prolongation may also be encountered in polymorphic ventricular tachycardia

(for review, see Leenhardt et al. 1995)

2.14.1. Hypertrophic cardiomyopathy

The presence of ventricular hypertrophy in a normotensive individual without other

congenital heart diseases or acquired valvular abnormalities is most probably due to a

mutation in one of the genes encoding sarcomeric proteins. Histologically, the disorder is

characterized by myocardial disarray and hypertrophy of myocytes which may as well be

present as only local macroscopic hypertrophy. Electrocardiographic manifestations

include QRS axis deviation, high voltage and/or inverted T -waves. Clinical criteria

proposed for hypertrophic cardiomyopathy are presented in Table 3 (McKenna et al.

1997). These criteria are to be used in the relatives (potential carriers) of a patient with

known hypertrophic cardiomyopathy.
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2.14.2. Dilated cardiomyopathy

The hallmarks of dilated cardiomyopathy include end-diastolic dimension greater than

expected for age and body surface area as well as reduced left ventricular shortening

Table 3. Proposed diagnostic criteria for hypertrophic cardiomyopathy in adult

members of affected families (McKenna et al. 1997)

Major criteria Minor criteria

Echocardiography

Left ventricular wall thickness > 13 mm in the

anterior septum or posterior wall,

or > 15 mm in the posterior septum or free wall

Left ventricular wall thickness of 12 mm

in the anterior septum or posterior wall,

or 14 mm in the posterior septum or free

wall

Severe systolic anterior motion (septal-leaflet contact)

of anterior mitral valve

Moderate systolic anterior motion (no

leaflet-septal contact)

Redundant mitral valve leaflets

Electrocardiography

Left ventricular hypertrophy + repolarization changes Complete bundle branch block or

(minor) intraventricular conduction

defect

T -wave inversion in leads I and aVL (>3 mm)

(with QRS-T -wave axis difference > 30o),

V3-6 (>3 mm) or II and III and aVF (>5 mm)

Minor repolarization changes

Deeps S V2 (> 25 mm)

Abnormal Q (> 40 ms or 25 % R wave) in at least 2

leads from II, III, aVF (in abscence of left anterior

hemiblock), V1-4; or I, aVL, V5-6

Unexplained chest pain, dyspnoea or

syncope

fraction or ejection fraction, features that are being used for phenotypic classification

(Olson et al. 1998). In more than 20 % of cases, dilated cardiomyopathy is familial
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(Goerss et al. 1995). For the time being, the underlying gene abnormalities identified are

sarcomere protein actin encoding gene ACTC (Olson et al. 1998), dystrophin protein

linking myofibrils to an extracellular matrix (Franz et al. 1995, Muntoni et al. 1997) and

lamin A/C gene (Fatkin et al. 1999). Prolonged QT interval in some dilated

cardiomyopathy patients suggests ion channel dysfunction resulting in repolarization

abnormalities and increased risk of arrhythmias (Martin et al. 1994). These may be

secondary to structural or metabolic changes in failing heart, in general. Experimental

evidence for prolongation of action potential prolongation has been gained from single

myocytes obtained from failing hearts, and these are due to alterations in at least

potassium currents (Tomaselli et al. 1994).

2.14.3. Familial idiopathic ventricular fibrillation

Although same SCN5A ion channel gene causes both LQT3 and familial idiopathic

ventricular fibrillation, the latter is brought about mutations which result in loss of

function, opposite to those in LQT3 which result in gain of function (Chen et al. 1998).

The clinical manifestations are sudden death, ventricular tachycardia and ventricular

fibrillation. Typically, arrhythmias occur during sleep or at rest (Alings and Wilde 1999).

The diagnostic hallmarks of familial idiopathic ventricular fibrillation are ST -segment

elevation in the right precordial leads and complete or incomplete right bundle branch

block (Brugada and Brugada 1992, Gussak et al. 1999) which can be unmasked by

administration of strong sodium channel blockers (class I C antiarrthytmic drugs)

(Antzelevitch et al. 1996). In electrophysiologic study, HV interval is usually prolonged

and ventricular fibrillation is inducible (for review, see Alings and Wilde 1999). QT

interval is usually normal and arrhythmias during exercise stress test occur very

infrequently whereas late potentials are common in signal-averaged ECG (Alings and

Wilde 1999).
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2.14.4. Arrhythmogenic right ventricular dysplasia

The diagnostic criteria for arrhythmogenic ventricular dysplasia were published in 1994

(see Table 4) and the spectrum of the clinical findings assessed in a multi-center study in

1997 (Corrado et al. 1997). The criteria are based on the presence of structural

alterations: replacement of cardiomyocytes by fibrofatty infiltration leading to dyskinesia

and aneurysms of the ventricle. Both of them are encountered primarily in the right

ventricular myocardium. Electrocardiograpic consequences include right-sided T -wave

abnormalities and late potentials in signal-averaged ECG and the disease manifests as

ventricular tachycardia of left bundle branch block configuration (often associated with

exercise), syncope or sudden death. Thus far, the genetic origin of arrhythmogenic right

ventricular dysplasia has been linked to 4 chromosomal loci (Rampazzo et al. 1994,

Rampazzo et al. 1995, Severini et al. 1996, Rampazzo et al. 1997).

2.14.5. Familial polymorphic ventricular tachycardia

Catecholaminergic polymorphic ventricular tachycardia was first described in 1975 (Reid

et al. 1975). In this syndrome, any form of increased adrenergic stimulation (exercise,

frightening, infusion of isoproterenol) can induce polymorphic ventricular premature

beats followed by seemingly bidirectional and finally, polymorphic tachycardia. The

morphology of ventricular complexes suggest that the arrhythmias arise from anywhere

in the myocardium (Leenhardt et al. 1995). The genetic nature of the disorder is

demonstrated in those 21 children studied by Leenhardt et al., (Leenhardt et al. 1995)

among whom a familial history of syncope or sudden death was present in 30 % of cases.

Some reports indicate that prolonged QT intervals are encountered in patients with

polymorphic ventricular tachycardia (Shaw 1981, Rutter and Southhall 1985). In

addition, presence of a prominent U wave has been reported as reviewed by Leenhardt et

al. (Leenhardt et al. 1995). In their own study, only subjects with QT interval with < 440

ms were included (Leenhardt et al. 1995). A noticeable feature in their patients was the

sinus bradycardia; mean resting heart rate being only 60 beats per minute in children of

10 years of age on average.
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Table 4. Criteria for diagnosis of right ventricular dysplasia (McKenna et al. 1994).

Major Minor

Global and/or regional dysfunction and structural alterations

Sever dilatation and reduction of right ventricular
ejection fraction with no (or only mild) left ventricular
impairment

Mild global right ventricular dilatation
and/or ejection fraction reduction with
normal ventricle

Localized right ventricular aneurysms (akinetic or
dyskinetic areas with diastolic bulging)

Mild segmental dilatation of the right
ventricle

Severe segmental dilatation of the right ventricle Regional right ventricular hypokinesia

Tissue characterization of walls

Fibrofatty replacement of myocardium on
endomyocardial biopsy

Repolarization abnormalities

Inverted T -waves in right precordial
leads (V2 and V3) (people aged more
than 12 years; in absence of RBBB)

Depolarization/conduction abnormalities

Epsilon waves or localized prolongation (>110 ms) of
the QRS complex in right precordial leads (V1-V3)

Late potentials in signal averaged ECG

Arrhythmias

LBBB type ventricular tachycardia
(sustained and non-sustained,
recognizable on Holter, exercise stress
testing )

Frequent ventricular extrasystoles (more
than 1000/24h) (Holter)

Family history

Familial disease confirmed at necropsy or surgery Familial history of premature sudden
death (<35 years) due to suspected right
ventricular dysplasia

Familial history (clinical diagnosis
based on present criteria)

Diagnosis of arrhythmogenic right ventricular dysplasia can be based on the presence of  two

major criteria or one major + two minor criteria or four minor criteria.
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3. AIMS OF THE STUDY

When starting the present study, the molecular background and heterogeneity of the long

QT syndrome was still unknown. This series of studies has been performed to improve

diagnostic accuracy of long QT syndrome and identifying patients at highest risk of

cardiac events. Revelation of the heterogenetic molecular etiology have expanded these

studies towards the search of  differential diagnostic features to recognize the type of ion

channel disorder when molecular level diagnosis is not available.

The aims of this study were to evaluate the ability of electrocardiographic measures and

characteristics to identify the LQTS patients from the healthy relatives and from patients

carrying a congenital arrhythmogenic disorder closely resembling LQTS. The focus is on

the commonly reported diagnostic features of LQTS, namely QT interval prolongation

and its dynamic changes concurrently with heart rate changes, T -wave abnormalities,

and finally, exercise-provoked arrhythmias.

First, QT interval behavior during and after exercise were assessed in non-homogenous

pediatric LQTS patient group and their healthy relatives to determine, whether QT

interval behavior during heart rate changes differ between healthy controls and LQTS

patients in general.

Second, the diagnostic performance of QT interval duration and dispersion were

evaluated in highly homogenous LQTS population to exclude the bias which might arise

from genetic heterogeneity.

Third, the diagnostic performance of potentially diagnostic electrocardiographic features

of LQTS were evaluated in the most common forms of LQTS, that is in genetically

identified LQT1 and LQT2 patient populations and compared to healthy relatives.

Finally, the diagnostic features of another inherited arrhythmogenic disorder resembling

LQTS by arrhythmia triggers and fatality were studied to make a distinction between it

and the LQTS.
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4. PATIENTS AND METHODS

4.1. Patients

Index patients who underwent diagnostic evaluation of congenital long QT syndrome

were either referred from other domestic health care institutions or identified at the

Department of Medicine or the Children’s Hospital of Helsinki University Hospital. They

fulfilled at least two of the following three criteria:

- presence of syncopal spells and/or documented torsades des pointes tachycardia,

- prolonged QT interval,

- family history of long QT syndrome or sudden death

A detailed, extended family history was obtained from all index patients to identify the

potential carriers of the arrhythmogenic disorder and the clinical course of the disease in

each pedigree.

A summary of study patients and controls is presented in Table 5. The studies were

approved by the Ethical Review Committee of the department.

Table 5. Number of study patients in studies I-III

Study I Study II Study III

Clinical LQTS 19

Clinical controls 19

LQT1

       pore region mutation * 30 23

      C-terminal mutation * 22

LQT2* 20

Molecularly defined controls * 44 33

* identification of the mutation or, in controls, exclusion of the mutation found in the family from

each individual’s DNA sample.
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Study I

Nineteen children, age 13+3 years, with congenital LQTS underwent an exercise test.

The criterion for the diagnosis of LQTS was unexplained syncope or a positive family

history of LQTS and QTc > 440 ms (Bazett’s formula) in standard 12 lead ECG. Patients

were not molecularly defined. The QTc of the patients at rest was 494+44 ms. Fifteen

patients had a positive family history. Ten children had had syncopal spells. Four had lost

their consciousness during exercise, 5 awake without exercise and one asleep with

convulsions. In two patients, syncopal spells could not be related to sleep, awakening or

any stressful situation. Seven out of nine asymptomatic children had at least one family

member with symptoms (syncope or sudden death) which had occurred during exercise.

All symptomatic patients were using beta blocking medication during the time of

examination. No other medications were in use. Nineteen clinically and

electrocardiographically healthy relatives of the patients, age 12+4 years, were studied as

control group. None of them had any symptoms or medications and the QTc in standard

12 -lead ECG at rest did not exceed 440 ms. None of the children had bundle branch

block in baseline ECG.

Study II

The study group consisted of members of a family in which 30 individuals were identified

to be carriers of D317N mutation of KVLQT1 gene causing LQTS type 1 (LQT1

patients). Twelve of the patients in LQT1 group had experienced an exercise-related

syncope. The youngest symptomatic patient was 3 years old at the time of the first

syncope. Eight patients had experienced syncope at the age of 5 to 25 years and 3

patients between 30 to 37 years. In addition to them, one boy drowned at the age of 10.

Although no genetic analysis was performed, he was included in the study group since

his QTc was 450 ms, he had been treated for LQTS because of multiple exercise-related

syncopal attacks before his death and his mother is a carrier of the D317N mutation.

As a control group, 44 non-carriers of the mutation from the same pedigree were

studied. One diabetic subject was excluded from the study because diabetes mellitus may



28

affect the repolarization time. Seven LQT1 patients (5 symptomatic, 2 asymptomatic)

and one control subject were receiving beta-adrenergic blocking agents during the time

of ECG registration. In two cases (both LQT1 patients) beta-adrenergic antagonists had

been discontinued for at least five half-lives before ECG was obtained. No other

medications known to affect the repolarization were in use.

Study III

The first patient group consisted of 23 subjects with the mutation D317N in the pore

domain of the KvLQT1 gene (Saarinen et al. 1998) (LQT1 pore region group). Seven of

these patients were symptomatic. All symptoms were associated with physical exercise.

The second patient group included 22 subjects with the G589D mutation close to the C-

terminus of the KvLQT1 gene (Saarinen et al. 1998) (LQT1 C-terminus group). Four of

the patients in the LQT1 C-terminus group had experienced a syncopal spell; three of

these were exercise-related. Thus, a syncopal spell was associated with exercise in 10 out

of 11 cases in LQT1 patients. The third patient group consisted of 20 patients from 10

families with a variety of HERG channel mutations (R176W, L552S, Y569H, G584S,

G601S, 453delC and 1631delAG) (LQT2 group) (Laitinen et al. 2000). Each of these

mutations resulted in translation frameshift or a substitution of a conserved amino acid

and was found to be present in affected family members but absent in controls. In every

family, at least one patient had experienced a syncope and had QTc > 480 ms. Altogether

8 out of the 9 symptomatic LQT2 patients had their symptoms at rest or during night.

Thirty-three healthy relatives were included as a control group. No beta-blocking or

other medications known to affect the repolarization were used by patients or control

subjects during the study.

In the Results chapter of this book, the total number of subjects has been expanded in the

comparison of QTc intervals of carriers of D317N (n=25) and G589D (n=253) mutations

of KvLQT1, as well as del453C (n=13) and L552S (n=30) mutations of HERG gene and

non-carrier relatives (n=464) (figure 1). In addition, in figures 2 and 3, QT intervals of

altogether 160 male and 188 female carriers of G589D mutation of KvLQT1 gene and
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those of 166 male and 202 female non-carrier relatives have been plotted against heart

rate.

Study IV

Two families with a total of 51 living members were evaluated because of family

members with only marginally prolonged QT interval but reproducible arousal of

ventricular arrhythmias during exercise. Six members had died suddenly at adolescence

or early adulthood, and five patients had been evaluated because of an exercise-related

syncope. A total of 43 members of these two families underwent cardiological

examination, including electrocardiographic tests and cardiac ultrasonography. Fourteen

were considered affected due to the appearance of exercise-induced polymorphic

ventricular premature complexes, and nine of them were subjected to further evaluation

including cardiac catheterization and angiography, electrophysiologic testing and

endomyocardial biopsy. All patients were otherwise healthy and had no medications.

QTc’s were compared to age- and gender-matched healthy controls. Patients with

frequent ventricular premature complexes (>10 during any minute) or ventricular

tachycardia during exercise stress test were considered affected. Individuals < 18 years

of age with normal exercise stress test findings were classified as unknown. Of the

deceased family members, those whose unexplainable sudden death had occurred under

the age of 30 years were also considered affected.

4.2. Genetic studies

For all genetic analyses, genomic DNA was isolated from venous EDTA-anticoagulated

blood samples using standard methods. An informed consent was obtained from patients

and their healthy relatives. Control DNA samples were obtained from 100 apparently

healthy adult individuals.

Study II: Forty-four unrelated probands were screened for mutations of the cardiac

potassium channel gene KVLQT1 using single-strand conformational polymorphism

(SSCP) and subsequent DNA sequencing. As a result, a mutation D317N (former
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D188N) was identified in one large pedigree. Relatives in this pedigree were studied by

digesting PCR products of genomic DNA (Saarinen et al. 1998).

Study III: Two Finnish unrelated JLN patients were screened for mutations of the minK

and KVLQT1 genes by direct sequencing of PCR products of genomic DNA. A G589D

mutation was detected in two unrelated probands with JLN. Thereafter, a total of 120

unrelated Finnish probands with clinically diagnosed LQTS were screened for this

mutation and altogether 32 (27 %) of the probands were found to be heterozygous for

the G589D mutation.

Exons of HERG gene were sequenced after their amplification by PCR and each of the

mutations R176W, L552S, Y569H, G584S, G601S, 453delC and 1631delAG were

identified in one of the probands of 89 unrelated pedigrees. Altogether 87 carriers of

these mutations were identified in the pedigrees.

In addition, 100 DNA samples from control subjects were screened for each mutation.

Study IV: Nine affected and 16 unaffected individuals from the family 1, and four

affected and six unaffected individuals from the family 2 were included in the genetic

linkage study. Highly polymorphic microsatellite markers were used in genotyping.

Linkage analyses were performed with MLINK and ILINK options of FASTLINK v.

3.0P package (Cottingham Jr et al. 1993, Schaffer et al. 1994) and GENEHUNTER

(Kruglyak et al. 1996). A penetrance of 0.9 for the disease and an affected allele

frequency of 0.0002 were assumed. Multipoint lod scores were calculated in affected

only mode in pedigree 1 while in two-point calculations the whole pedigree was

included.

4.3. Resting 12-lead ECG

A twelve-lead ECG was recorded at rest (50 mm/s, 0.1 mV/mm). QT interval was

measured from lead II and adjusted for heart rate (QTc) according to the Bazett’s

formula. Total QT interval was measured from the beginning of Q wave to the end of T -
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wave manually by tangent method and early QT interval (QTm) to the peak of T -wave.

Late QT interval was the interval from the peak of T -wave to the end of T -wave. A

tangent method was chosen to enable a uniform way of measuring QT interval even at

higher heart rates when the end of T -wave merges into P wave. It should be noted

however, that this method may result in somewhat shorter QT intervals than when

measured to the point where the terminal limb of T -wave is joined to the TP baseline. In

cases of notched or double-peaked T-waves, the first peak of T -wave was used for

measurements. If the interval between the peaks was longer than 150 ms, the second was

considered as a U-wave and was not included in the measurements (Chou 1979). All

ECG measurements were carried out blinded to the genotype.

4.4. Assessment of QT interval normality

QT interval was adjusted for subject’s heart rate using Bazett’s formula QTc = QT/RR1/2

(sec) (Bazett 1920). In order to compare the sensitivity and specificity of different

methods to adjust for heart rate in separating LQT1 patients from their healthy relatives,

corrected QT intervals (QTfc) adjusted for heart rate by the Fridericia cubic root formula

(QTfc = QT/RR1/3) (Fridericia 1920) was also calculated. In addition to these adjustment

methods, actual QT values were also compared at resting heart rates to upper normal

limits for both genders. As the upper reference limit, we used the mean plus 1.96

standard deviation (SD) measured in a large survey of 10717 middle-aged Finnish

subjects (Karjalainen et al. 1997). Measurements from lead II were used for comparisons

between these normal values and different heart rate corrected QT intervals.

4.5. Rate adaptation of the QT interval

To analyze the rate adaptation of the repolarization intervals, we studied the behavior of

total (study I and III), early and late (study I) QT by plotting the measurements against

the heart rate and calculating the slopes by least squares linear regression analysis in each

individual. QT intervals were measured at specified heart rates from 80 to 150 (study I)

and from 100 to 130 (study III) by steps of 10 beats whenever available. At least 3

measurements in each phase were required for each patient or control person in order to
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create a slope for the individual. These slopes of the QT to heart rate relationship were

used to assess the differences in repolarization phenomenon between the groups and to

evaluate the intraindividual changes between physical effort and recovery. Lead V3,

which often has the largest T-wave amplitudes, was used for measurements (Cowan et

al. 1988). In studies I and III, total QT intervals were measured. In addition, also early

QT intervals were measured in study I. The late QT was the subtraction of early QT

from total QT. The registered measurement was a mean of at least 4 consecutive QRST

complexes. In cases of notched or double-peaked T-waves, the first peak of T -wave was

used for measurements. No macroscopically evident T -wave alternans which would

have interfered with QT interval measurements, was observed.

4.6. QT dispersion

QT dispersion (QTD) was defined as the difference between the maximal and minimal

QT interval in any of the leads measured. Leads with T -waves of less than 1 mm

amplitude were rejected. At least 9 out of 12 leads were available for measurements in

each subject. Relative QT dispersion (rQTD) was calculated as follows: (the SD of

QT/mean QT) x 100. Relative QTm dispersion (QTmD) was defined as (the SD of

QTm/mean QTm) x 100.

4.7. Application of proposed clinical criteria for LQTS

The criteria take into account the ECG findings, clinical history and family history

(Schwartz et al. 1993). For details please see table 2.

4.8. Exercise stress test

Exercise stress test was performed with a bicycle ergometer (Marquette Case 006,

Marquette Electronics, Milwaukee, Wisconsin) with continuous recording of leads II,

aVF, V1-3,5. Initial load 30 W was increased by 15 W per minute until exhaustion. When

patients could not continue with the exercise any more, they immediately laid down and

continuous ECG was recorded at supine position for 7 minutes. QT interval was
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measured from lead V3. Maximum heart rate and achieved load (studies I, III and IV)

and heart rate at which ventricular bigeminy first appeared were recorded (study IV

only). QRS morphology was used to determine the origin of ventricular arrhythmias

according to criteria obtained from ventricular tachycardia mapping in study IV.

Expected maximum heart rate (studies I and III) was calculated as follows: expected

maximum heart rate = 205 - (0.5 x age in years) beats per minute which follows the

guidelines reviewed by Hammond and Froelicher (Hammond and Froelicher 1985).

4.9. Ambulatory ECG recording

The ambulatory electrocardiograms were recorded on tape with commercial recorders

(Marquette Electronics, Milwaukee, Wisconsin) on an out-patient basis. Bipolar leads

resembling standard electrocardiography leads V1 and V5 were used. The recorded

electrocardiograms were analyzed using a Marquette Series 8000 Holter analysis system.

Mean heart rate, number of ventricular premature complexes and ventricular tachycardias

(>3 consecutive ventricular complexes) were calculated.

4.10. Differential diagnostic studies in study IV

4.10.1. Signal-averaged ECG

Signal-averaged ECG was recorded (Marquette Electronics, Milwaukee, WI) using

Frank XYZ leads and a band pass filtering of 40-250 Hz in study IV. Simpson’s criteria

were applied for late potentials (Simson 1981).

4.10.2. Provocative testing for familial idiopathic ventricular fibrillation

Acute effects of intravenous flecainide (2 mg/kg), a class IC sodium channel blocking

agent were tested in four patients (study IV) to unmask the potential ECG abnormalities

encountered in familial idiopathic ventricular fibrillation (Antzelevitch et al. 1996). A 12 -

lead ECG was obtained prior to, during and 15, 30, 60 and 120 minutes after the

administration of the flecainide.
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4.10.3. Cardiac ultrasonography

Cardiac ultrasonography with a 2.5 MHz transducer was performed using parasternal

long- and short-axis and apical 4-chamber views. Left ventricular dimensions and wall

thickness were measured from the M-mode recordings. Doppler echocardiography was

used to exclude any valvular stenosis or regurgitation.

4.10.4. Programmed ventricular stimulation

Programmed ventricular stimulation was performed from right ventricular apex and

outflow tract using 8-beat drive trains at cycle lengths of 600 and 400 ms with single and

double extrastimuli with and without infusion of epinephrine (50 ug/kg/min).

4.10.5. Right ventriculography

Right ventriculography in 30o right and 60o left anterior oblique views and coronary

arteriography were carried out in 11 adult affected subjects with polymorphic ventricular

extrasystoles in study IV. Right ventricular wall abnormalities were assessed according

to Daliento (Daliento et al. 1990), and end-diastolic and end-systolic volumes were

calculated according to Ferlinz (Ferlinz et al. 1975). Cineangiograms of 10 patients with

paroxysmal supraventricular tachycardia served as normal controls in a blinded analysis

by two cardiologists independently.

4.10.6. Magnetic resonance imaging

Six patients in study IV underwent magnetic resonance imaging (MRI). The MRI heart

studies were performed using a 1.5 Tesla superconducting Siemens unit (Magnetom

Vision), a phased-array body coil and electrocardiogram triggering. T1-weighted spin

echo axial and sagittal images were used to analyze the right ventricular anterior wall and

a gradient-echo axial and sagittal cine sequence was used to evaluate the possible right

ventricular dyskinesia. A breath-hold technique was combined to improve the image

quality.
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4.10.7. Right ventricular endomyocardial biopsy

Right ventricular endomyocardial biopsy specimens were obtained from 12 patients in

study IV. Biopsies from patients less than 6 weeks after heart transplantation and no

signs of rejection or infection were used for reference. Formalin-fixed, paraffin-

embedded tissue samples were stained with hematoxylin-eosin, van Gieson and Masson's

trichrome. The extent of myocardial fibrosis (van Gieson and Masson staining), lipid

degeneration, nuclear changes and interstitial inflammation were scored blindly by two

pathologists. Inflammation was confirmed by immunohistochemistry using a leukocyte

common antigen monoclonal antibody (DAKO, Denmark). Scores from 0 to 3, (0

indicating no and 3 advanced changes) were used.

Summary of the methods used in the substudies is presented in table 6.

Table 6. Summary of methods used in studies I-IV.

Study I Study II Study III Study IV

12-lead ECG X X X X

     QT dispersion X

Exercise ECG X X X

     Rate adaptation of QT X X

Signal-averaged ECG X

Ambulatory ECG recording X

Molecular genetic diagnosis X X X

Cardiac ultrasonography X X X X

Other cardiac imaging and histology X

Programmed ventricular stimulation X
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5. RESULTS

5.1. QT interval duration

Although mean QTc intervals are significantly longer in patients carrying mutations of

KvLQT1 (D317N; n=25, G589D; n=253) or HERG mutations (del453C; n=13, L552S;

n=30) than in healthy population, QTc intervals show overlap with healthy relatives

(mean QTc 412+24 ms, n=464), Figure 1. Healthy men have shorter QTc intervals than

women (407+24 vs. 418+24 ms).

The sensitivity and specificity of two different QT adjustment formulas (Bazett 1920,

Fridericia 1920) to correctly diagnose the carriers of one of these mutations, the

KVLQT1 D317N was evaluated in study II. QT intervals adjusted for heart rate

according to Bazett’s square root formula or Fridericia’s cubic root formula exceeding

440 ms were considered abnormal. Diagnostic sensitivity and specificity based on

Bazett’s formula were 90% and 88%, respectively, while the assessment by heart rate,

adjusted QT intervals according to the Fridericia cubic root formula yielded sensitivity of

80% and specificity of 100% (Table 7).

Classification according to the normal upper limit (mean + 1.96 SD) of QT interval

obtained from a large population study (Karjalainen et al. 1997) resulted in a sensitivity

of 80 % and specificity of 100% (Table 7). The overlap of QT intervals is illustrated in

male carriers of G589D mutation (n=160) of KvLQT1 gene and their non-carrier male

relatives (n=166) in figure 2. The corresponding plot for females (n of carriers is188 and

non-carriers 202) is presented in figure 3.

5.2. QT dispersion

Dispersion of QT in symptomatic patients with the mutation in the pore region of the

KvlQT1 gene was increased (66+48 ms) compared to controls (45+19 ms, p=0.02)
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(study II). QT dispersion and mean QT did not correlate significantly with each other in

LQT1 patients (r=0.34, p=0.07) or controls (r=0.28, p=0.64).

Table 7. Application of various diagnostic alternatives in LQTS in regard to molecular
classification of patients and their relatives.

Diagnostic classification Genetic status

D317N + D317N -

Bazett (Bazett 1920)

     QTc < 440 ms 3 38

     QTc > 440 ms 27 5

Fridericia (Fridericia 1920)

     QTfc < 440 ms 6 43

     QTfc > 440 ms 24 0

Population study (Karjalainen et al.

1997)

     QT < upper normal limit 6 43

     QT > upper normal limit 24 0

Proposed diagnostic criteria for the

LQTS (Schwartz et al. 1993)

      Low probability 8 43

     Intermediate probability 6 0

     High probability 16 0
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Figure 1. Distribution of QTc intervals among LQT1 and LQT2 patients and non-
carriers.
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Figure 2. Distribution of QT intervals according to heart rate in male carriers and non-
carriers of KvLQT1 G589D genotype.
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Figure 3. Distribution of QT intervals according to heart rate in female carriers and
non-carriers of KvLQT1 G589D genotype.

5.3. T -wave morphology

A biphasic or double-peaked T-wave in any of the precordial leads was observed at rest

in 10, during exercise in 8 and after exercise in 10 of 19 pediatric LQTS patients (study

I). In the control group (n=19), double-peaked T-wave was exhibited at rest by 8, during

exercise by one and during recovery phase by no one. In the LQTS group, three out of

11 cases showing prolongation of total QT from exercise to recovery did not exhibit

double-peaked T -waves at rest, during or after exercise.

5.4. Resting heart rate

Resting heart rates in LQT1 or LQT2 patients were not different from that in healthy

controls. LQT1 patients with a mutation in the pore region of the channel had similar
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resting heart rates as their healthy relatives (68+12 bpm in both groups, study II) and

similar to that of LQT2 patients (68+9 bpm, study III).

5.5. Maximal heart rate

In the heterogenous pediatric LQTS group (study I) without beta antiadrenergic

medication, the maximal heart rate attained was lower than in the control group (172+20

vs. 195+11 bpm, p=0.0003).

Gene-specific analysis in adolescent and adult population showed differences between

genes (LQT1 and LQT2 types of LQTS) as well as between different mutations

(study III), Table 8.

Table 8. Maximal actual and relative heart rates in LQT1, LQT2 and control subjects.

LQT1 pore

region

n=23

LQT1 C-

terminal

n=22

LQT2

n=20

Controls

n=33

p-values

Maximal heart rate

(beats/min)

140+13 161+7 187+14 181+13 *

Maximal heart rate of

expected (%)

76+5 86+4 99+6 96+7 *

* <0.001 between all groups except LQT2 and controls.

No difference was found in the achieved heart rate between symptomatic and

asymptomatic LQT1 patients (LQT1 pore region and C-terminus groups combined). The

maximal load achieved was 236+46 W, 248+46, 187+48 W and 237+46 W for men and

135+40, 149+31, 161+17 and 152+32 W for women of each group, respectively, p=NS.

Impairment in heart rate was related to QT interval duration, examined as a correlation

between achieved/expected heart rate -ratio and QT interval. Figure 4 shows the

relationship of QT interval duration at the heart rate 130 bpm during exercise and the

achieved/expected heart rate ratio. The mean QT interval of controls at this heart rate is

282+12 ms.
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Figure 4. Relationship between QT interval and the relative maximal heart rate
achieved during exercise.

Altogether, 56 % of the LQT1 patients and only 3 % of the controls failed to reach the

provisional limit of 85 % of the expected maximal heart rate, whereas all the LQT2

patients exceeded this limit. The predictive value (R2) of relative maximal heart rate was

28 % during exercise (r=0.53) and 30 % (r=0.55) during recovery at heart rate 130 beats

per minute.

5.6. QT interval during and after exercise

QT intervals were significantly longer in both LQT1 groups and LQT2 group than in the

control group at all heart rates during exercise and recovery (Figure 5, Table 9).

Comparison between mutation types showed that QT intervals among LQT1 patients

were longer in patients with the mutation in the pore region than in those with the

mutation in the C-terminal region of KvLQT1 gene throughout the exercise phase except

at the lowest heart rate studied (100 beats min-1). LQT2 patients had QT interval

significantly longer than that of LQT1 C-terminus patients at the lowest heart rate, but
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thereafter exhibited shortening to values less than in either of the LQT1 groups. During

the recovery phase, LQT1 patient groups did not differ from each other, but both

showed significantly longer QT intervals than LQT2 patients (Figure 5).
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Figure 5. Group mean QT interval + SE at specified heart rates in two LQT1 patient
groups, LQT2 patients and controls.

In the control group, the QT interval was at all heart rates significantly shorter during

recovery than during exercise (Table 9). In LQT1 patient groups, QT intervals were

equal to or longer than during exercise at heart rates of 100 and 110 beats min-1 (Table

9). In LQT2 group, QT intervals at the lowest examined heart rate were shorter during

recovery than during exercise. At higher heart rates, there was no difference between

exercise and recovery phases in LQT2 patients.

During exercise, the QT intervals of the patients and the controls overlapped at all

analyzed heart rates (Figure 6). During recovery at lowest measurable heart rate of 100

beats min-1 or 110 beats min-1, LQT1 patients and controls showed no overlapping but 2

(10 %) LQT2 patients had QT values within the range of controls (Figure 6, Table 10).
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Figure 6. QT intervals during exercise and recovery.

Table 9. QT interval during and after exercise.

Group QT (ms),

exercise

QT (ms),

recovery

p-value *

100 LQT1 pore region 414+38 428+28 NS
LQT1 C-terminus 386+21 417+31 <0.01
LQT2 420+40 402+36 <0.05
Controls 345+20 329+16 <0.01

110 LQT1 pore region 402+30 404+26 NS
LQT1 C-terminus 380+27 401+23 <0.05
LQT2 362+37 368+29 NS
Controls 328+14 313+16 <0.001

* exercise vs. recovery
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Table 10. Application of various diagnostic alternatives in LQTS in regard to
molecular classification of patients and controls.

Diagnostic classification                 Molecular classification

LQT1                   LQT2             Controls

Standard ECG

       QTc < 470 ms 18 7 33

       QTc > 470 ms 27 13 0

QT interval during recovery phase

      normal *

      abnormal *

      not available

0

44

1

2

17

1

31

0

2

* Measured QT interval during recovery phase at heart rate 100 bpm < 360 ms or if not

measurable, < 350 ms at heart rate 110 bpm.

5.7. Rate adaptation of QT interval

LQT2 patients have steeper QT/heart rate dependence during exercise than healthy

controls or LQT1 patients with a mutation in the C-terminal end of the gene (Table 11,

study III). However, as figure 7 illustrates, the wide overlap in individuals’ slopes

between the groups impedes the use of QT/HR -slopes to make a gene-specific

diagnosis.

During recovery, both LQT1 and LQT2 patients have steeper QT/HR -slopes than

controls (Table 11). A QT/HR -slope less negative or equal to -1.6 during recovery

excluded all LQT1 patients and 90 % the LQT2 patients. However, 36 % of healthy

controls have QT/HR -slopes steeper than that. In the heterogeneous pediatric study

population, QT/heart rate dependence was also steeper during recovery than in healthy

children (-2.50+0.82 vs. -1.79+0.47, p=0.003).
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Table 11. QT/heart rate slopes (ms/min-1) during exercise and recovery

LQT1 patients LQT2 patients Controls

Pore region C-terminus

QT/heart rate

    Exercise

    p -value $

    Recovery

-1.8+1.1

<0.01

-2.6+1.3 #

-1.6+0.7 *

<0.001

-2.4+0.5 #

-2.2+0.8 *#

NS

-2.2+0.6 #

-1.4+0.3 #

NS

-1.5+0.4

QT = QT interval, NS = not significant, * p<0.01 between LQT1 C-terminal group and LQT2

patients, # p<0.001 between LQT2 patients and controls, $ between exercise and recovery phases,

# p<0.001 compared to controls.
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2
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-8

Figure 7. QT/heart rate slopes during exercise (left)  and recovery (right).

It is the late QT/HR -slopes that behave differently in LQTS patients and controls (study

I). The late QT/heart rate -slopes were steeper in the LQTS group than in controls

during recovery (-1.27+0.74 and -0.46+0.29, respectively p<0.0001), whereas the early

QT/heart rate -slopes did not differ between the groups or between phases (study I).
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5.8. Occurrence of arrhythmias during exercise

The 45 LQT1 patients and 33 controls were devoid of arrhythmias during the exercise

test but two out of the 20 LQT2 patients (10%) exhibited frequent ventricular premature

complexes (>10 beats/minute) during exercise (study III). However, these arrhythmias

were observed only at rest before, in the beginning and after the exercise; not at the

higher heart rates during exercise.

5.9. Proposed diagnostic criteria for long QT syndrome

Application of the renewed diagnostic criteria for LQTS (Schwartz et al. 1993) to our

LQT1 study population (study II) reached specificity of 100 %. However, the sensitivity

of these criteria appeared low as 27 % of the D317N mutation carriers were classified

into the category of low probability, 20 % into category of intermediate probability and

only 53 % to the category of high probability of LQTS (Table 7).

5.10. Asymptomatic versus symptomatic mutation carriers

Both actual and rate-adjusted QT interval parameters (Table 12) as well as QTm values

were similar in symptomatic and asymptomatic LQT1 patients with D317N mutation

(study II).

However, analysis of larger patient population (n=249) with genetically uniform type of

LQT1 (G589D mutation) shows that a higher proportion of mutation carriers are

symptomatic the longer QTc interval is (Figure 8) and that the duration of QTc interval

is related to the risk of symptoms.

Although QT dispersion was increased in symptomatic LQT1 patients (n=12) compared

to unaffected relatives (n=43) (66+48 vs. 37+15 ms, p=0.02), symptomatic patients

LQT1 did not differ from asymptomatic (n=18) (45+19 ms). QT dispersion in the

asymptomatic LQT1 patients did not differ significantly from that in the control

individuals. Dispersion of early phase of repolarization (QTm) was increased in the group
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Figure 8. Distribution of symptomatic and asymptomatic QTc carriers of G589D

mutation of KvLQT1 gene.

Table 12. Total and early duration of repolarization and heart adjusted QT intervals in

symptomatic and asymptomatic LQT1 patients and controls

Symptomatic

LQT1 (n=12)

Asymptomatic

LQT1 (n=18)

Controls

(n=43)

p-value

Hr (beats/min) 70+9 65+13 69+12 NS

QT (lead II) 464+47 459+38 381+33 <0.001 *

QTc (lead II) 496+38 475+36 404+25 <0.001 *

QTfc (lead II) 485+38 469+31 396+22 <0.001 *

QTm (lead II) 391+44 380+33 310+32 <0.001 *

Hr = heart rate, QT = measured QT interval. QTc = QT/RR1/2, QTfc = QT/RR1/3, QTm = early

duration of repolarization, * = symptomatic LQT1 patients vs. controls, and asymptomatic LQT1

patients vs. controls. No significant differences between symptomatic and asymptomatic patients.

of symptomatic LQT1 patients (57+32 ms) compared to controls (32+15 ms, p=0.006),

whereas asymptomatic patients and control individuals did not differ significantly in this

respect. Still, relative dispersion of early phase of repolarization (rQTm) did not differ

significantly between any of the three groups. Overlapping of QT dispersion between

groups was considerable (data not shown) and accordingly in the individual risk

assessment the value of QT dispersion appears to be low.
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5.11. Differential diagnostic studies in families with polymorphic ventricular

tachycardia

Study IV shows that even carriers of familial polymorphic ventricular tachycardia have

slightly prolonged QTc interval compared to healthy controls (430 + 18 ms vs. 409 + 19

ms, p<0.01). In none of the carriers, however, QTc was 470 ms or above and thus, none

of them showed unequivocal QT interval prolongation.

Appearance of ventricular arrhythmias was observed in 14 out of 15 carriers of the 1q42-

43 genotype. The arrhythmias consisted of frequent ventricular premature complexes in

the beginning, followed by ventricular bigeminy and in most cases by salvoes of

ventricular premature complexes. The arrhythmias appeared first at a sinus rate of

121+15 (range 104-153) bpm and disappeared immediately after cessation of work.

5.11.1. Findings of cardiac imaging studies

To exclude cardiomyopathies as the cause of the exercise-induced polymorphic

ventricular tachycardia, imaging studies were performed to the affected family members.

In echocardiography, the left ventricular end-diastolic and end-systolic indices were

normal (Table 13). Interventricular septal and posterior wall thickness was <11 mm in all

patients. Right ventricular cineangiography revealed no structural alterations or tricuspid

valve insufficiency. One patient had a 70 % stenosis of the descending left anterior

coronary artery. In MRI study, the structure of the myocardium was normal in all six

studied cases. No findings suggestive to right ventricular cavity or outflow tract

dilatation or adipose replacement of the myocardium were observed. Contraction of right

ventricle was synergistic.

5.11.2. Other features of familial polymorphic ventricular tachycardia linked to

chromosome 1q42 q43

Two affected subjects (14 %) had a late potential in signal-averaged ECG. In the

electrophysiologic study, ventricular tachycardia was not inducible in any patient and

AV- and HV -intervals were normal. Intravenous administration of flecainide in four
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patients did not result in development of right bundle branch block or ST segment

elevation.

Table 13. Echocardiography and right ventricular cineangiography in familial

polymorphic ventricular tachycardia.

Patients

(N=9

Controls

(N=9)

Echocardiographic left ventricular

- end-diastolic diameter/BSA (mm/m2) 28+3 29+4

- end-systolic diameter/BSA (mm/m2) 18+3 19+3

-posterior wall thickness (mm) 9+2 9+2

Interventricular septal thickness (mm) 10+2 9+1

Cineangiographic right ventricular

- end-diastolic volume/BSA (ml/m2) 89+15 93+29

- end-systolic volume/BSA (ml/m2) 36+8 38+9

- ejection fraction (%) 41+4 42+6

BSA = body surface area. None of the parameters showed statistically significant differences

between groups.

Microscopic examination of the endomyocardial biopsies showed no significant

differences in the extent of fibrosis, adiposity, nuclear changes and inflammation between

patients and controls. Iron, Kongo and periodic acid-Schiff staining were negative in all

samples excluding relevant storage diseases.

A significant positive LOD score (4.74 in the two families combined and over 3.0 in

pedigree 1 alone) was obtained in linkage analysis. Based on the genotypes obtained in

linkage analysis, only one carrier was devoid of arrhythmias during exercise stress test

thus demonstrating high penetrance of the disease. This genotype was also associated

with high mortality; the cumulative mortality by the age of 30 years was 31 % in the

studied families.
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6. DISCUSSION

6.1. QT interval and clinical criteria in the diagnosis of LQTS

Results of study II show that the QT interval measured on a resting ECG cannot reliably

separate LQTS patients from the normal population, irrespective of method used to

judge QT interval normality. Thus, a standard 12 -lead ECG is an insufficient method to

diagnose all affected LQTS patients, even in a genetically homogenous population. As

further demonstrated in study II, other clinical and ECG features applied as a proposed

criteria score do not result in acceptable sensitivity in diagnosing the LQTS carriers with

normal or borderline QT interval. It is also of note that those criteria have been applied in

several studies in which they may have resulted in biased patient selection, since only the

most obvious cases would have been included.

QT interval measurements carried out on specific heart rates showed, in study III, that

although LQTS patients in general have longer QT intervals than the normal population,

there is still considerable overlap. Opposite to QT intervals at rest and during exercise,

QT intervals of LQTS patients and healthy controls during the recovery phase show

significantly less overlap. Therefore, observing the QT interval at heart rates 110 or 100

bpm during the recovery phase following exercise is likely to contribute to clinical

diagnosis in the most common types of LQTS, i.e. LQT1 and LQT2 variants.

6.2. Rate adaptation of QT intervals

The dynamic changes in QT/heart rate response are even capable to show differences

between different mutations of same gene, i.e. mutations of pore and C-terminal region

of KvLQT1. This was found in study III although these groups did not differ in respect

to their baseline QT interval measurements.

The results of study III demonstrate that QT interval shortening in LQT2 patients is even

more efficient than in healthy population. This finding is incongruous with preliminary
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findings in molecularly defined LQTS patients (Schwartz et al. 1995). The small sample

size of that study is probably the cause of this incongruence (Schwartz et al. 1995). The

steeper QT/RR interval dependence during sleep in LQT1 type of LQTS patients, as

demonstrated in 24-hour ambulatory ECG recordings by Neyroud et al. (Neyroud et al.

1998) may be due to lower heart rates as no significant difference to controls was

observed at exercise in the studies I and III.

QT interval duration was significantly longer in patients with C-terminal mutation of

KvLQT1 gene at slower heart rates during recovery than at similar heart rates during

exercise. The repolarization disorder in terms of QT interval duration worsened in these

patients during recovery and approximated that encountered in patients with mutations in

the pore region. Thus the significance of even less severe mutations may be dependent on

physiological conditions.

6.3. T -wave morphology

Results of study I show that a biphasic or double-peaked T-wave appeared to be a more

specific marker of LQTS in the heterogenous pediatric LQTS population in ECG

obtained after exercise than in standard resting ECG, when compared to normal controls

(study I). However, QT interval prolongation from the exercise phase to recovery phase

distinguished more LQTS carriers than morphological T -wave abnormalities.

Nevertheless, based on previous findings in a mixed adult and pediatric population, T -

wave humps or double-peaked T -waves in limb leads or leads V4-6 of a resting ECG

appeared to be specific even if not sensitive findings for LQTS (Lehmann et al. 1994)

and of additional diagnostic help. Of note, presence of T -wave inversions should raise

the suspicion of hypertrophic cardiomyopathy or arrhythmogenic right ventricular

dysplasia (in adults), depending on the location of the changes (see Table 3 and 4).

6.4. Heart rate

KvLQT1 mutations resulting in prolonged repolarization also impair the sinus rate

response to exercise. Opposite to this, HERG mutations, even when causing markedly

prolonged QT interval, do not restrict the maximal heart rate. Because the majority of
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LQTS patients belong either to LQT1 or LQT2 subtypes, the inability to achieve the

predicted age-adjusted maximal heart rate together with a significantly prolonged QT

interval in resting ECG suggests the LQT1 rather than LQT2 subtype.

Abnormally low resting heart rate is not a diagnostic feature in adolescent or adult LQTS

population in general. Only in a small number of male LQT3 carriers has resting heart

rate been observed to be lower than in LQT1 or LQT2 carriers (Locati et al. 1998). In

neonates and children with most severe repolarization abnormality, 2:1 atrioventricular

block (Garson et al. 1993, Gorgels et al. 1998), or significant sinus rate decrease

compared to healthy children of same age can occasionally be observed. Such a severe

repolarization abnormality and atrioventricular block may result from homozygous

carrier state of at least HERG mutation (Piippo et al. 1999) and probably also from

KvLQT1 mutation. The atrioventricular block might be precipitated by the QT interval

prolonging effect of pauses following a premature contraction. In LQT1, this may also be

due to impaired QT and His-Purkinje refractory period shortening at high sinus rates. In

addition, because the sinus rate is naturally highest in the youngest children, the direct

negative effect of KvLQT1 gene on sinus node cells may also be easiest to note in the

youngest children.

6.5. Risk of arrhythmic events

The duration of ventricular repolarization as measured by QT interval was similar in

symptomatic and asymptomatic LQT1 patients with the same genotype in study II. Thus

the carrier status of a specific mutation itself seems to be more of a determinant of

cardiac events than QT interval duration, per se. However, the large variation in QTc

intervals of carriers, as well as the higher proportion symptomatic patients among

carriers with the longest QTc intervals, suggest that there are additional factors which

also contribute to individual’s risk of arrhythmias.

In LQT1 patients, the propensity to arrhythmias during and immediately after exercise

may result from the relative QT interval prolongation concomitantly with increase of

heart rate during exercise. In addition, the QT interval enlengthening after cessation of
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exercise is most likely to play a role as well. Opposite to this, LQT2 patients, whose QT

interval shortening is relatively more efficient compared to controls, rarely have

symptoms during physical activities. This may imply that shortening the duration of

repolarization by increasing the resting heart rate by pacemaker therapy may be beneficial

particularly in LQT2 type of LQTS.

Dispersion of ventricular repolarization was increased in symptomatic LQTS patients.

Increased dispersion of the QT interval in patients with LQTS has been reported in

several earlier studies without performing molecular diagnosis (Day et al. 1990, Linker et

al. 1992, Priori et al. 1994). However, conclusions on the relationship between degree of

dispersion and risk of cardiac events have been inconsistent. The study by Linker et al.

(Linker et al. 1992) showed no difference in the degree of dispersion between LQTS

groups with frequent or infrequent symptoms, whereas Priori et al. found that LQTS

patients who responded to beta-blockade had lower QT dispersion than non-responders

while on beta-adrenergic antagonists therapy (Priori et al. 1994). In our molecularly

defined cohort of LQTS patients, overlapping of QT dispersion between groups was

considerable and accordingly, in the individual risk assessment, the value of QT

dispersion appears to be low.

6.6. Occurrence of arrhythmias during exercise

Two out of 20 LQT2 patients exhibited ventricular premature beats and none of the 45

LQT1 patients had ventricular arrhythmias during exercise. On the other hand, the rate-

dependent nature of augmentation of arrhythmias is typical for (catecholaminergic)

familial polymorphic ventricular tachycardia. In the group of patients with familial

polymorphic ventricular tachycardia the reproducible arousal of ventricular arrhythmias

during exercise was similar to that in the series of Leenhardt et. al. (Leenhardt et al.

1995). In both studies, the average sinus rate at which the arrhythmias appeared during

exercise was approximately 120 bpm. Relative physical inactivity during ambulatory

ECG recording can fail to increase the heart rate enough to exceed the individual,

arrhythmia-provoking limit. This will result in arrhythmia-free registration and false

negative diagnosis.
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6.7. Differential diagnosis

The spectrum of inherited arrhythmogenic cardiomyopathies and ion channel disorders is

broad and contain subtle forms which are difficult to detect with conventional methods.

Index case’s false diagnosis will result in search of non-diagnostic and misleading clues

like QT -interval or ventricular wall structure abnormalities. Besides in LQTS, long QT

interval may be encountered in hypertrophic as well as in dilated cardiomyopathy (Martin

et al. 1994). QT interval prolongation has not been described in conjunction of familial

idiopathic ventricular fibrillation or arrhythmogenic right ventricular dysplasia except in

rare cases. The value of cardiac imaging in the assessment of a patient with prolonged

QT interval is therefore primarily in excluding hypertrophic or dilated cardiomyopathy,

both of which may cause secondary QT interval prolongation.

In this study it was observed that arrhythmias are seldom induced during exercise test in

the LQTS whereas the appearance of polymorphic ventricular premature complexes is

the diagnostic feature in families with the exercise-induced polymorphic ventricular

tachycardia. Although physical exercise is a common triggering factor for cardiac events

in LQTS, the incidence of arrhythmic events is low compared to how often most people

do some kind of physical exercise. In addition, other contributing factors may be needed

for induction of arrhythmias besides the physical exercise, itself. Appearance of

polymorphic ventricular tachycardia during exercise should raise the suspicion of the

familial form of this arrhythmia.

6.7.1. Differentiating the familial polymorphic ventricular tachycardia from LQTS

and other common inherited arrhythmogenic cardiac disorders

The clinical manifestation of familial polymorphic tachycardia resembles LQTS by the

exercise-induced syncopal spell and sudden death occurring especially in young patients.

QT intervals in the carriers of familial polymorphic tachycardia are slightly longer than

normal but not unequivocally prolonged. In addition, exercise does not progressively

increase the number of multifocal ventricular premature complexes in LQTS patients.
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In contrast to arrhythmogenic right ventricular dysplasia, our patients of familial

polymorphic ventricular tachycardia lacked the T-wave abnormalities (Corrado et al.

1997) and right ventricular wall abnormalities, and the polymorphic appearance of the

ventricular tachycardia was clearly different from monomorphic tachycardia with left

bundle branch block pattern encountered in arrythmogenic right ventricular dysplasia

(Corrado et al. 1997). Left ventricular wall thickness and systolic function in all carries

of familial polymorphic tachycardia also exclude hypertrophic and dilated

cardiomyopathies.

6.7.2. Differentiating symptomatic LQTS patients from patients with syncopal spells

from other, non-genetic causes

The risk of cardiac events in LQTS is highest in children and adolescents (Zareba et al.

1998). In these youngest age groups of syncope patients with apparently normal hearts,

the most common differential diagnostic alternatives are vasovagal syncope and seizure

in addition to those inherited arrhytmogenic disorders discussed in previous chapters.

Prodromal weakness and nausea lasting tens of seconds or minutes is suggestive to

vasovagal syncope whereas syncope starting with convulsions with or without preceding

aura is likely to result from primary central nervous system disorder.

Therefore, detailed description of foregoing prodromal symptoms as well as eye-witness

observations are important in differentiating the arrhythmia-induced syncope from the

other relatively common causes. Careful family history may reveal sudden death at young

age suggestive to inherited arrhythmogenic disorder, even to a specific type of LQTS,

e.g. swimming or vigorous exercise to LQT1, auditory stimulus to LQT2 and sleep to

LQT3.

6.8. Implications for future studies

The large variation of QT intervals found among carriers of even one specific mutation

raises the question of modifying factors for phenotypic expression. Such determinants are

many, including serum ion concentrations, sex hormones, other ion channel genes (either
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mutated or allelic variants) as well as genes regulating autonomic nervous system

signaling and secondary messengers in cells.

Even if mutations in the three most common LQTS genes in general result in

approximately 6 per cent mortality (Zareba et al. 1998), the malignancy of the ion

channel defect is likely to depend on the specific mutation; findings in study III showed

that the magnitude of QT prolongation was different in various physiological states

depending on the mutation. As some mutations are not found just in sporadic families but

as founder mutations which are enriched in a population, larger cohorts with specific

mutations will be available for subgroup analyses. These studies may provide data with

significant differences in mortality depending on how the given ion channel is impaired.

The finding of gene- and mutation-specific differences in QT heart rate responses implies

also that when antiarrhythmic drugs are being evaluated in vivo, not only should changes

in QT interval duration at rest be assessed but also the changes in rate adaptation of QT

interval. Thus, in the presence of a pharmacological agent, the impaired shortening of QT

interval during exercise or excessive prolongation during recovery after exercise, might

indicate a detrimental effect on ion channel function even if there was no change in

baseline QTc. On the other hand, in LQTS patients, the opposite would most likely mean

beneficial effect as in case of mexiletine in LQT3. Other currently used or potential

antiarrhythmic agents in LQTS should be studied in like manner as well.

Totally new mechanisms for arrhythmias may be revealed in those inherited

arrhythmogenic cardiac disorders which molecular mechanisms are not yet solved. An

example of this is the familial polymorphic tachycardia linked to chromosome 1q42-43. It

remains to be electrophysiologically further characterized in order to understand the

arrhythmia mechanism. This could enhance both the therapy and the recognition of the

underlying gene. Without doubt, the molecular genetic diagnosis will lead to more

frequent identification of this disorder and enable early diagnosis and preventive

measures in future.
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7. CONCLUSIONS

Patient with anxiety or exercise-related syncopal spell or with family history of sudden

death under such circumstances, should undergo cardiac evaluation which includes

exercise stress test which improves the diagnostic accuracy of long QT syndrome,

particularly when attention is paid to the recovery phase.

A normal QT interval on the resting ECG does not exclude the possibility of congenital

long QT syndrome. Other resting electrocardiogram measures (T -wave abnormalities

and QT dispersion) are capable of providing suggestive diagnosis of congenital long QT

syndrome only in a limited proportion of LQTS gene carriers.

Although cardiac events are most common in patients with abnormal QTc interval (> 470

ms), it is essential that family members of LQTS patients with normal or only marginally

prolonged QT intervals are evaluated to obtain or exclude the diagnosis of LQTS. This

also enables the counseling of these individuals potentially at risk. If the molecular

diagnosis is not available, the clinical diagnosis is often enhanced by observing the

dynamic changes of QT interval after exercise

Normal or marginally prolonged QT interval together with exercise-induced ventricular

arrhythmias in a structurally normal heart is suggestive of familial polymorphic

ventricular tachycardia, the prognosis of which is poor. Although its symptoms are the

same as in LQTS, the former can be differentiated from the latter by electrocardiographic

measures. Systematic evaluation of family members to detect or exclude the exercise-

induced arrhythmias is obligatory for correct diagnosis until molecular genetic diagnosis

is available. The age-dependent manifestation of the disease necessitates repeated

exercise stress tests for potential carriers of the disorder.
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8. SUMMARY

Background

Congenital long QT syndrome is a spectrum of cardiac ion channel disorders resulting

from mutations in several different genes. As a common feature, they share the

prolonged ventricular repolarization which is associated with life-threatening ventricular

arrhythmias. The conventional diagnosis is based on demonstration of a long QT interval

which, however, is often absent thus resulting in false negative diagnosis. This series of

studies was performed to improve diagnostic accuracy of long QT syndrome.

Patients and methods

A total of 114 long QT syndrome patients and 96 healthy controls, as well as 43 patients

belonging to families with members exhibiting exercise-induced ventricular premature

beats, were examined in this series of studies. Patients with molecularly defined diagnosis

were used in three out of four studies. Family history, history of cardiac events and

resting, exercise and ambulatory ECG recordings were obtained to determine the QT

interval behavior as an indicator of propensity to ventricular arrhythmias. QT intervals

were compared during physical exercise and subsequent recovery at specified heart rates.

Cardiac imaging studies were used to exclude other disorders resulting in QT interval

prolongation.

Results

Proposed diagnostic criteria for LQTS had diagnostic specificity of 100 % in a

molecularly defined population of LQTS carriers and their healthy relatives, whereas the

sensitivity was 73 %. During recovery from exercise, normal upper limits for unadjusted

QT intervals exceeding 350 ms at heart rate 110 beats/min or 360 ms at heart rate 100

beats/min (lowest available) resulted in diagnostic sensitivity and specificity of 100 % for

LQT1 patients and 89 % and 100 % for LQT2 patients. Mutations in KvLQT1 gene

decreased the age-specific maximal heart rate in the study population from 96+7 % to

76+5 % (pore region mutation) or 86+4 % (C-terminal mutation) whereas mutations in
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HERG gene had no effect on maximal heart rate. None of the LQT1 and only 10 % of

LQT2 patients had ventricular premature complexes during exercise whereas they were

encountered in 93 % of subjects with 1q42-q43 positive genotype.

Conclusions

The findings of this study indicate that QT intervals of long QT syndrome carriers show

overlap with those of healthy population and cannot often be distinguished from them

using resting ECG and clinical history only. Studies during exercise stress test show that

different long QT syndrome genotypes have different influence on QT interval behavior

in various physiological states. Even mutations of a given cardiac ion channel gene alter

the dynamics of repolarization to different degree. Alterations in QT interval during

standardized conditions like exercise stress test, enhance the diagnosis of long QT

syndrome and separation between the two most common types of it, LQT1 and LQT2

type of long QT syndrome. In addition, exercise stress test is informative in the

differential diagnosis of long QT syndrome from a familial arrhythmic disorder with

symptoms similar to LQTS.
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