13 research outputs found

    Structural basis of phosphatidylinositol 3-kinase C2α function

    Get PDF
    Phosphatidylinositol 3-kinase type 2α (PI3KC2α) is an essential member of the structurally unresolved class II PI3K family with crucial functions in lipid signaling, endocytosis, angiogenesis, viral replication, platelet formation and a role in mitosis. The molecular basis of these activities of PI3KC2α is poorly understood. Here, we report high-resolution crystal structures as well as a 4.4-Å cryogenic-electron microscopic (cryo-EM) structure of PI3KC2α in active and inactive conformations. We unravel a coincident mechanism of lipid-induced activation of PI3KC2α at membranes that involves large-scale repositioning of its Ras-binding and lipid-binding distal Phox-homology and C-C2 domains, and can serve as a model for the entire class II PI3K family. Moreover, we describe a PI3KC2α-specific helical bundle domain that underlies its scaffolding function at the mitotic spindle. Our results advance our understanding of PI3K biology and pave the way for the development of specific inhibitors of class II PI3K function with wide applications in biomedicine

    First Community-Wide, Comparative Cross-Linking Mass Spectrometry Study

    Get PDF
    The number of publications in the field of chemical cross-linking combined with mass spectrometry (XL-MS) to derive constraints for protein three-dimensional structure modeling and to probe protein-protein interactions has increased during the last years. As the technique is now becoming routine for in vitro and in vivo applications in proteomics and structural biology there is a pressing need to define protocols as well as data analysis and reporting formats. Such consensus formats should become accepted in the field and be shown to lead to reproducible results. This first, community-based harmonization study on XL-MS is based on the results of 32 groups participating worldwide. The aim of this paper is to summarize the status quo of XL-MS and to compare and evaluate existing cross-linking strategies. Our study therefore builds the framework for establishing best practice guidelines to conduct cross-linking experiments, perform data analysis, and define reporting formats with the ultimate goal of assisting scientists to generate accurate and reproducible XL-MS results

    Mussel-Inspired Polymerization of Peptides

    Get PDF
    A previously introduced tyrosinase‐activated polymerization of Tyr‐ and Cys‐bearing peptides yielding artificial mussel‐glue proteins is realized without the need of the specific enzyme by a chemical activation route. This decouples the sequence of polymerizable peptides (unimers) from the constraints of tyrosinase substrates and enables the polymerization of minimal motifs such as Dopa‐Lys‐Cys (Umini*KC) or Dopa‐Gly‐Cys (Umini*GC). In the polymerization procedure, sodium periodate is used to oxidize Dopa residues of the unimers to Dopa‐quinones to which the thiol of a Cys residue is added in a Michael‐type reaction. The resulting polyUmini*KC and polyUmini*GC exhibit a thiol–catechol connectivity as a potent adhesive functionality at each repeat unit. QCM‐D experiments show the excellent substrate adsorption properties of the products from the chemically activated polymerization. On aluminum oxide surfaces, polyUmini*KC rapidly forms a coating, even under seawater model conditions and the coating resists rinsing with hypersaline solution of 4.2 M salt mixtures. While the sodium periodate oxidation is less specific than the tyrosinase reaction and requires the implementation of Dopa instead of Tyr residues into the polymerizable unimers, the chemical route makes scale‐up more easily accessible.Peer Reviewe

    Equine Herpesvirus Type 1 Modulates Cytokine and Chemokine Profiles of Mononuclear Cells for Efficient Dissemination to Target Organs

    Get PDF
    Equine herpesvirus type 1 (EHV-1) causes encephalomyelopathy and abortion, for which cell-associated viremia and subsequent virus transfer to and replication in endothelial cells (EC) are responsible and prerequisites. Viral and cellular molecules responsible for efficient cell-to-cell spread of EHV-1 between peripheral blood mononuclear cells (PBMC) and EC remain unclear. We have generated EHV-1 mutants lacking ORF1, ORF2, and ORF17 genes, either individually or in combination. Mutant viruses were analyzed for their replication properties in cultured equine dermal cells, PBMC infection efficiency, virus-induced changes in the PBMC proteome, and cytokine and chemokine expression profiles. ORF1, ORF2, and ORF17 are not essential for virus replication, but ORF17 deletion resulted in a significant reduction in plaque size. Deletion of ORF2 and ORF17 gene significantly reduced cell-to-cell virus transfer from virus-infected PBMC to EC. EHV-1 infection of PBMC resulted in upregulation of several pathways such as Ras signaling, oxidative phosphorylation, platelet activation and leukocyte transendothelial migration. In contrast, chemokine signaling, RNA degradation and apoptotic pathways were downregulated. Deletion of ORF1, ORF2 and ORF17 modulated chemokine signaling and MAPK pathways in infected PBMC, which may explain the impairment of virus spread between PBMC and EC. The proteomic results were further confirmed by chemokine assays, which showed that virus infection dramatically reduced the cytokine/chemokine release in infected PBMC. This study uncovers cellular proteins and pathways influenced by EHV-1 after PBMC infection and provide an important resource for EHV-1 pathogenesis. EHV-1-immunomodulatory genes could be potential targets for the development of live attenuated vaccines or therapeutics against virus infection

    A Complex of Htm1 and the Oxidoreductase Pdi1 Accelerates Degradation of Misfolded Glycoproteins

    Get PDF
    A quality control system in the endoplasmic reticulum (ER) efficiently discriminates polypeptides that are in the process of productive folding from conformers that are trapped in an aberrant state. Only the latter are transported into the cytoplasm and degraded in a process termed ER-associated protein degradation (ERAD). In the ER, an enzymatic cascade generates a specific N-glycan structure of seven mannosyl and two N-acetylglucosamine residues (Man7GlcNAc2) on misfolded glycoproteins to facilitate their disposal. We show that a complex encompassing the yeast lectin-like protein Htm1 and the oxidoreductase Pdi1 converts Man8GlcNAc2 on glycoproteins into the Man7GlcNAc2 signal. In vitro the Htm1-Pdi1 complex processes both unfolded and native proteins albeit with a preference for the former. In vivo, elevated expression of HTM1 causes glycan trimming on misfolded and folded proteins, but only degradation of the non-native species is accelerated. Thus, modification with a Man7GlcNAc2 structure does not inevitably commit a protein for ER-associated protein degradation. The function of Htm1 in ERAD relies on its association with Pdi1, which appears to regulate the access to substrates. Our data support a model in which the balanced activities of Pdi1 and Htm1 are crucial determinants for the efficient removal of misfolded secretory glycoproteins

    Improved Two-Dimensional Reversed Phase-Reversed Phase LC-MS/MS Approach for Identification of Peptide-Protein Interactions

    No full text
    Quantitative mass spectrometry (MS) in combination with affinity purification approaches allows for an unbiased study of protein-protein and peptide-protein interactions. In shotgun approaches that are based on proteolytic digestion of complex protein mixtures followed by two-dimensional liquid-phase chromatography, the separation effort prior to MS analysis is focused on tryptic peptides. Here we developed an improved offline 2-D liquid chromatography-MS/MS approach for the identification and quantification of binding proteins utilizing reversed-phase capillary columns with acidic acetonitrile-containing eluents in both chromatographic dimensions. A specific fractionation scheme was applied in order to obtain samples with evenly distributed peptides and to fully utilize the separation space in the second dimension nanoLC-MS/MS. We report peptide-protein interaction studies to identify phosphorylation-dependent binding partners of the T cell adapter protein ADAP. The results of the SILAC-based pull-down experiments show this approach is well suited for distinguishing phosphorylation-specific interactions from unspecific binding events. The data provide further evidence that phosphorylated Tyr 595 of ADAP may serve as a direct binding site for the SH2 domains of the T cell proteins SLP76 and NCK. From a technical point of view we provide a detailed protocol for an offline 2-D RP-RP LC-MS/MS method that offers a robust and time-saving alternative for quantitative interactome analysis

    Improved Two-Dimensional Reversed Phase-Reversed Phase LC-MS/MS Approach for Identification of Peptide-Protein Interactions

    No full text
    Quantitative mass spectrometry (MS) in combination with affinity purification approaches allows for an unbiased study of protein-protein and peptide-protein interactions. In shotgun approaches that are based on proteolytic digestion of complex protein mixtures followed by two-dimensional liquid-phase chromatography, the separation effort prior to MS analysis is focused on tryptic peptides. Here we developed an improved offline 2-D liquid chromatography-MS/MS approach for the identification and quantification of binding proteins utilizing reversed-phase capillary columns with acidic acetonitrile-containing eluents in both chromatographic dimensions. A specific fractionation scheme was applied in order to obtain samples with evenly distributed peptides and to fully utilize the separation space in the second dimension nanoLC-MS/MS. We report peptide-protein interaction studies to identify phosphorylation-dependent binding partners of the T cell adapter protein ADAP. The results of the SILAC-based pull-down experiments show this approach is well suited for distinguishing phosphorylation-specific interactions from unspecific binding events. The data provide further evidence that phosphorylated Tyr 595 of ADAP may serve as a direct binding site for the SH2 domains of the T cell proteins SLP76 and NCK. From a technical point of view we provide a detailed protocol for an offline 2-D RP-RP LC-MS/MS method that offers a robust and time-saving alternative for quantitative interactome analysis

    Identification of functional lipid metabolism biomarkers of brown adipose tissue aging

    No full text
    Objective: Aging is accompanied by loss of brown adipocytes and a decline in their thermogenic potential, which may exacerbate the development of adiposity and other metabolic disorders. Presently, only limited evidence exists describing the molecular alterations leading to impaired brown adipogenesis with aging and the contribution of these processes to changes of systemic energy metabolism. Methods: Samples of young and aged murine brown and white adipose tissue were used to compare age-related changes of brown adipogenic gene expression and thermogenesis-related lipid mobilization. To identify potential markers of brown adipose tissue aging, non-targeted proteomic and metabolomic as well as targeted lipid analyses were conducted on young and aged tissue samples. Subsequently, the effects of several candidate lipid classes on brown adipocyte function were examined. Results: Corroborating previous reports of reduced expression of uncoupling protein-1, we observe impaired signaling required for lipid mobilization in aged brown fat after adrenergic stimulation. Omics analyses additionally confirm the age-related impairment of lipid homeostasis and reveal the accumulation of specific lipid classes, including certain sphingolipids, ceramides, and dolichols in aged brown fat. While ceramides as well as enzymes of dolichol metabolism inhibit brown adipogenesis, inhibition of sphingosine 1-phosphate receptor 2 induces brown adipocyte differentiation. Conclusions: Our functional analyses show that changes in specific lipid species, as observed during aging, may contribute to reduced thermogenic potential. They thus uncover potential biomarkers of aging as well as molecular mechanisms that could contribute to the degradation of brown adipocytes, thereby providing potential treatment strategies of age-related metabolic conditions. Keywords: Brown adipose tissue, Aging, Ceramides, Sphingolipids, Dolichol lipid

    Structural changes of TasA in biofilm formation of Bacillus subtilis

    Get PDF
    Microorganisms form surface-attached communities, termed biofilms, which can serve as protection against host immune reactions or antibiotics. Bacillus subtilis biofilms contain TasA as major proteinaceous component in addition to exopolysaccharides. In stark contrast to the initially unfolded biofilm proteins of other bacteria, TasA is a soluble, stably folded monomer, whose structure we have determined by X-ray crystallography. Subsequently, we characterized in vitro different oligomeric forms of TasA by NMR, EM, X-ray diffraction, and analytical ultracentrifugation (AUC) experiments. However, by magic-angle spinning (MAS) NMR on live biofilms, a swift structural change toward only one of these forms, consisting of homogeneous and protease-resistant, β-sheet–rich fibrils, was observed in vivo. Thereby, we characterize a structural change from a globular state to a fibrillar form in a functional prokaryotic system on the molecular level. © 2018 National Academy of Sciences. All Rights Reserved
    corecore