84 research outputs found

    Cell death in sepsis: a matter of how, when, and where

    Get PDF
    Dysregulated cell death in several tissues is intimately involved in the pathogenesis of sepsis and contributes to multiple organ failure. Whether cell death during sepsis occurs by necrosis or apoptosis may depend on the cell type as well as the disease stage and is therefore a matter of intense debate. While lymphocyte apoptosis contributes to immunosuppression in sepsis, recent evidence suggests that necrosis of hepatocytes predominates in septic patients with liver dysfunction and correlates with poor survival. These distinct modes of cell death might have different consequences for the inflammatory response but are also critical for therapeutic interventions and the disease outcome. Understanding the complexity of death processes employing recently available serum biomarkers of cell death could lead to novel therapeutic approaches and assist in the steering of sepsis treatment

    Mechanisms of Cell Death in Acute Liver Failure

    Get PDF
    Acute liver failure (ALF) can be the consequence of various etiologies, that might vary between different geographic regions. Most frequent are intoxications with acetaminophen, viral hepatitis, or liver damage of unknown origin. ALF occurs when the extent of hepatocyte death exceeds the regenerative capacity of the liver. The mode of liver cell death that is predominantly induced in ALF, i.e., apoptosis or necrosis, is still controversial and presumably determined by the etiology, duration, and magnitude of liver injury. Severe liver damage involves oxidative stress and depletion of ATP resulting in necrosis. In contrast, maintenance of ATP stores is required for the execution of apoptosis. Recent data suggest that necrosis resulting from severe liver damage is associated with poor outcome of ALF patients. Discrimination between apoptosis and necrosis might be therefore useful for the identification of ALF patients requiring liver transplantation. Identification of the molecular cell death mechanisms remains an important issue not only for early prediction of ALF outcome, but also for therapeutic interventions. In view of the pleiotropic functions of critical mediators of cell death and tissue regeneration, a particular challenge will be to reduce hepatocellular death without inhibiting the regenerative capacity of the liver. Here, we review the molecular mechanisms of hepatocyte injury and the pathways leading to apoptosis and necrosis, which might represent potential diagnostic and therapeutic targets in ALF

    α-Toxin is a mediator of Staphylococcus aureus–induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling

    Get PDF
    Infections with Staphylococcus aureus, a common inducer of septic and toxic shock, often result in tissue damage and death of various cell types. Although S. aureus was suggested to induce apoptosis, the underlying signal transduction pathways remained elusive. We show that caspase activation and DNA fragmentation were induced not only when Jurkat T cells were infected with intact bacteria, but also after treatment with supernatants of various S. aureus strains. We also demonstrate that S. aureus–induced cell death and caspase activation were mediated by α-toxin, a major cytotoxin of S. aureus, since both events were abrogated by two different anti–α-toxin antibodies and could not be induced with supernatants of an α-toxin–deficient S. aureus strain. Furthermore, α-toxin–induced caspase activation in CD95-resistant Jurkat sublines lacking CD95, Fas-activated death domain, or caspase-8 but not in cells stably expressing the antiapoptotic protein Bcl-2. Together with our finding that α-toxin induces cytochrome c release in intact cells and, interestingly, also from isolated mitochondria in a Bcl-2-controlled manner, our results demonstrate that S. aureus α-toxin triggers caspase activation via the intrinsic death pathway independently of death receptors. Hence, our findings clearly define a signaling pathway used in S. aureus–induced cytotoxicity and may provide a molecular rationale for future therapeutic interventions in bacterial infections

    Role of organic cation transporter 3 (OCT3) in the response of hepatocellular carcinoma to tyrosine kinase inhibitors

    Get PDF
    Impaired function of organic cation transporter 1 (OCT1) in hepatocellular carcinoma (HCC) has been associated with unsatisfactory response to sorafenib. However, some patients lacking OCT1 at the plasma membrane (PM) of HCC cells still respond to sorafenib, suggesting that another transporter may contribute to take up this drug. The aim of this study was to investigate whether OCT3 could contribute to the uptake of sorafenib and other tyrosine kinase inhibitors (TKIs) and whether OCT3 determination can predict HCC response to sorafenib. Cells overexpressing OCT3 were used to determine the ability of this carrier to transport sorafenib. Immunostaining of OCT3 was performed in HCC samples obtained in the TRANSFER study. Considering the intensity of staining and the number of OCT3-positive cells, tumors were classified as having absent, weak, moderate, or strong OCT3 expression and were also categorized according to the presence or absence of PM staining. Functional in vitro studies revealed that OCT3 is also able to mediate sorafenib uptake. Other TKIs, such as regorafenib, lenvatinib, and cabozantinib can also interact with this transporter. In silico studies suggested that the expression of OCT3 is better preserved in HCC than that of OCT1. In HCC samples, OCT3 was expressed at the PM of cancer cells, and its presence, detected in 26% of tumors, was associated with better outcomes in patients treated with sorafenib. In conclusion, analysis by immunohistochemistry of OCT3 in the PM of tumor cells may help to predict the response of HCC patients to sorafenib and potentially to other TKIs.Fondo de Investigaciones Sanitarias, Instituto de Salud Carlos III Junta de Castilla y Leo

    Modeling NAFLD Disease Burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030

    Get PDF
    Background & Aims: Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are increasingly a cause of cirrhosis and hepatocellular carcinoma globally. This burden is expected to increase as epidemics of obesity, diabetes and metabolic syndrome continue to grow. The goal of this analysis was to use a Markov model to forecast NAFLD disease burden using currently available data. Methods: A model was used to estimate NAFLD and NASH disease progression in eight countries based on data for adult prevalence of obesity and type 2 diabetes mellitus (DM). Published estimates and expert consensus were used to build and validate the model projections. Results: If obesity and DM level off in the future, we project a modest growth in total NAFLD cases (0–30%), between 2016–2030, with the highest growth in China as a result of urbanization and the lowest growth in Japan as a result of a shrinking population. However, at the same time, NASH prevalence will increase 15–56%, while liver mortality and advanced liver disease will more than double as a result of an aging/increasing population. Conclusions: NAFLD and NASH represent a large and growing public health problem and efforts to understand this epidemic and to mitigate the disease burden are needed. If obesity and DM continue to increase at current and historical rates, both NAFLD and NASH prevalence are expected to increase. Since both are reversible, public health campaigns to increase awareness and diagnosis, and to promote diet and exercise can help manage the growth in future disease burden. Lay summary: Non-alcoholic fatty liver disease and non-alcoholic steatohepatitis can lead to advanced liver disease. Both conditions are becoming increasingly prevalent as the epidemics of obesity and diabetes continue to increase. A mathematical model was built to understand how the disease burden associated with non-alcoholic fatty liver disease and non-alcoholic steatohepatitis will change over time. Results suggest increasing cases of advanced liver disease and liver-related mortality in the coming years

    Liver Phenotypes of European Adults Heterozygous or Homozygous for Pi∗Z Variant of AAT (Pi∗MZ vs Pi∗ZZ genotype) and Noncarriers

    Get PDF
    Homozygosity for the Pi∗Z variant of the gene that encodes the alpha-1 antitrypsin peptide (AAT), called the Pi∗ZZ genotype, causes a liver and lung disease called alpha-1 antitrypsin deficiency. Heterozygosity (the Pi∗MZ genotype) is a risk factor for cirrhosis in individuals with liver disease. Up to 4% of Europeans have the Pi∗MZ genotype; we compared features of adults with and without Pi∗MZ genotype among persons without preexisting liver disease.info:eu-repo/semantics/publishedVersio

    Caspase activation is involved in chronic periodontitis

    Get PDF
    Periodontitis, a common infectious disease, is initiated by various gram-negative bacteria and characterized by the destruction of the periodontal tissue. Here, we investigated the role of caspases, intracellular proteases that are the key mediators of apoptosis. We show that activation of caspase-3 and caspase-7 is considerably enhanced in gingival tissue from patients with periodontitis. We also demonstrate in in vitro experiments that various periodontopathic bacteria exert a direct growth-suppressing effect and, moreover, can trigger a host-mediated cytotoxic activity involving the CD95 death receptor. Our data suggest that caspase activation is a prominent feature in periodontitis-associated tissue injury. © 2005 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.link_to_subscribed_fulltex
    corecore