3 research outputs found

    Modeling familial Danish dementia in mice supports the concept of the amyloid hypothesis of Alzheimer's disease

    No full text
    Familial Danish dementia (FDD) is a progressive neurodegenerative disease with cerebral deposition of Dan-amyloid (ADan), neuroinflammation, and neurofibrillary tangles, hallmark characteristics remarkably similar to those in Alzheimer's disease (AD). We have generated transgenic (tg) mouse models of familial Danish dementia that exhibit the age-dependent deposition of ADan throughout the brain with associated amyloid angiopathy, microhemorrhage, neuritic dystrophy, and neuroinflammation. Tg mice are impaired in the Morris water maze and exhibit increased anxiety in the open field. When crossed with TauP301S tg mice, ADan accumulation promotes neurofibrillary lesions, in all aspects similar to the Tau lesions observed in crosses between β-amyloid (Aβ)-depositing tg mice and TauP301S tg mice. Although these observations argue for shared mechanisms of downstream pathophysiology for the sequence-unrelated ADan and Aβ peptides, the lack of codeposition of the two peptides in crosses between ADan- and Aβ-depositing mice points also to distinguishing properties of the peptides. Our results support the concept of the amyloid hypothesis for AD and related dementias, and suggest that different proteins prone to amyloid formation can drive strikingly similar pathogenic pathways in the brain

    Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models

    Get PDF
    Alzheimer's disease (AD) is characterized by amyloid-beta (Abeta) and tau deposition in brain. It has emerged that Abeta toxicity is tau dependent, although mechanistically this link remains unclear. Here, we show that tau, known as axonal protein, has a dendritic function in postsynaptic targeting of the Src kinase Fyn, a substrate of which is the NMDA receptor (NR). Missorting of tau in transgenic mice expressing truncated tau (Deltatau) and absence of tau in tau(-/-) mice both disrupt postsynaptic targeting of Fyn. This uncouples NR-mediated excitotoxicity and hence mitigates Abeta toxicity. Deltatau expression and tau deficiency prevent memory deficits and improve survival in Abeta-forming APP23 mice, a model of AD. These deficits are also fully rescued with a peptide that uncouples the Fyn-mediated interaction of NR and PSD-95 in vivo. Our findings suggest that this dendritic role of tau confers Abeta toxicity at the postsynapse with direct implications for pathogenesis and treatment of AD

    Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer

    Get PDF
    Triple-negative (TN) breast cancer is an aggressive subtype of breast cancer associated with a unique set of epidemiologic and genetic risk factors. We conducted a two-stage genome-wide association study of TN breast cancer (stage 1: 1529 TN cases, 3399 controls; stage 2: 2148 cases, 1309 controls) to identify loci that influence TN breast cancer risk. Variants in the 19p13.1 and PTHLH loci showed genome-wide significant associations (P < 5 x 10-8) in stage 1 and 2 combined. Results also suggested a substantial enrichment of significantly associated variants among the single nucleotide polymorphisms (SNPs) analyzed in stage 2. Variants from 25 of 74 known breast cancer susceptibility loci were also associated with risk of TN breast cancer (P < 0.05). Associations with TN breast cancer were confirmed for 10 loci (LGR6, MDM4, CASP8, 2q35, 2p24.1, TERT-rs10069690, ESR1, TOX3, 19p13.1, RALY), and we identified associations with TN breast cancer for 15 additional breast cancer loci (P &lt; 0.05: PEX14, 2q24.1, 2q31.1, ADAM29, EBF1, TCF7L2, 11q13.1, 11q24.3, 12p13.1, PTHLH, NTN4, 12q24, BRCA2, RAD51L1-rs2588809, MKL1). Further, two SNPs independent of previously reported signals in ESR1 rs12525163 odds ratio (OR) = 1.15, P = 4.9 x 10-4 and 19p13.1 (rs1864112 OR = 0.84, P = 1.8 x 10-9) were associated with TN breast cancer. A polygenic risk score (PRS) for TN breast cancer based on known breast cancer risk variants showed a 4-fold difference in risk between the highest and lowest PRS quintiles (OR = 4.03, 95% confidence interval 3.46-4.70, P = 4.8 x 10-69). This translates to an absolute risk for TN breast cancer ranging from 0.8% to 3.4%, suggesting that genetic variation may be used for TN breast cancer risk prediction
    corecore