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SUMMARY

Alzheimer’s disease (AD) is characterized by
amyloid-b (Ab) and tau deposition in brain. It has
emerged that Ab toxicity is tau dependent, although
mechanistically this link remains unclear. Here, we
show that tau, known as axonal protein, has
a dendritic function in postsynaptic targeting of the
Src kinase Fyn, a substrate of which is the NMDA
receptor (NR). Missorting of tau in transgenic mice
expressing truncated tau (Dtau) and absence of tau
in tau�/� mice both disrupt postsynaptic targeting
of Fyn. This uncouples NR-mediated excitotoxicity
and hence mitigates Ab toxicity. Dtau expression
and tau deficiency prevent memory deficits and
improve survival in Ab-forming APP23 mice, a model
of AD. These deficits are also fully rescued with
a peptide that uncouples the Fyn-mediated interac-
tion of NR and PSD-95 in vivo. Our findings suggest
that this dendritic role of tau confers Ab toxicity at
the postsynapse with direct implications for patho-
genesis and treatment of AD.

INTRODUCTION

Alzheimer’s disease (AD) is characterized by two hallmark

lesions, amyloid-b (Ab) plaques and neurofibrillary tangles

(NFTs) (Ballatore et al., 2007). Ab is derived from the amyloid-b

precursor protein (APP) by proteolytic cleavage (Haass et al.,

1992; Selkoe, 1997). The major constituent of NFTs is tau,

a microtubule (MT)-associated protein (Goedert et al., 1988). In

the course of AD, tau becomes phosphorylated, forming aggre-

gates that deposit as NFTs and neuropil threads (Geschwind,

2003). Tau can also form aggregates in the absence of an overt

Ab pathology, for example in frontotemporal dementia (FTD),
where familial mutations have been identified in the tau-encod-

ing MAPT gene (Ballatore et al., 2007). Evidence that tau

pathology in AD is induced by Ab comes from our previous

observation that intracerebral Ab injections exacerbate hyper-

phosphorylation of tau and NFT formation in transgenic mice

that express FTDmutant P301L tau (Götz et al., 2001b). A similar

finding was obtained by crossing transgenic mice with NFT and

plaque pathologies (Lewis et al., 2001).

Ab-plaque formation along with memory impairment and tau

pathology with increased phosphorylation, in the absence of

deposition and NFT formation, has been reproduced in several

transgenic mouse lines that express human APP together with

pathogenic mutations identified in familial AD (Götz and Ittner,

2008; Hsiao et al., 1996; Mucke et al., 2000; Sturchler-Pierrat

et al., 1997). In one of these, PDAPP, tau deficiency (tau�/�)
was shown to rescue lethality andmemory deficits by an uniden-

tified mechanism (Roberson et al., 2007).

Tau is known as axonal protein that regulates MT stability

and MT-dependent processes (Dixit et al., 2008; Drechsel

et al., 1992; Lee et al., 1988), while Ab likely exerts toxicity

at the postsynapse (Selkoe, 2002; Shankar et al., 2008;

Zhao et al., 2006). Although in AD, hyperphosphorylated tau

accumulates in the somatodendritic compartment of neurons

(Ballatore et al., 2007), given the spatial separation it remains

unknown how tau is involved in mediating Ab toxicity when AD

is initiated.

Seizures characterize several APP transgenic strains (Minkevi-

ciene et al., 2009; Palop et al., 2007; Palop andMucke, 2009) and

have been associated with AD; the extent of their contribution to

pathology, however, remains to be established (Minkeviciene

et al., 2009; Palop et al., 2007; Palop and Mucke, 2009). Excito-

toxicity results from overactivation of N-methyl-D-aspartate

(NMDA) receptors (NRs). Interestingly, tau reduction decreases

susceptibility to excitotoxic seizures in vivo, which may explain

the concomitant improvement of the PDAPP phenotype (Rober-

son et al., 2007). How tau prevents excitotoxic damage at

a molecular level is not understood.
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Figure 1. Truncated Tau Is Excluded from

Dendrites in Dtau74 Mice

(A) The longest human tau isoform (htau40; 441 aa)

is composed of an amino-terminal projection

domain (PD), the microtubule-binding (MTB)

domain with four repeats (gray boxes), and the car-

boxy-terminal tail (C0). Dtau transgenic mice

express only the PD of tau under control of the

neuronal mThy1.2 promoter. Dtau lacks the MTB

domain and therefore the MT-binding and aggre-

gation properties of full-length tau, but contains

a Fyn binding site.

(B) Expression pattern of Dtau in Dtau74 brains.

Immunohistochemistry (IHC) with a human tau-

specific antibody (HT7; brown) reveals Dtau

expression within several brain regions, including

hippocampus (hp), cortex (cx), and amygdala (am).

(C) Western blotting of wild-type and Dtau74

hippocampal extracts reveals endogenous murine

tau (50 kD) in all andDtau (37 kD) only in transgenic

samples. Quantification shows comparable levels

of endogenous tau, while endogenous tau and

Dtau levels add up to 2.4-fold increased total levels

in Dtau74 compared to WT mice.

(D) IHC of the hippocampal CA1 region reveals that inDtau74mice,Dtau localizes to the soma (S) but is excluded fromdendrites (D), whereas expression of P301L

mutant full-length tau in pR5 mice results in a somato-dendritic localization of transgenic tau (HT7; reactive with Dtau and pR5 tau, but not endogenous tau,

in red). The scale bar represents 50 mm.

Error bars represent the standard error. See also Figure S1.
Tau interacts via its amino-terminal projection domain (PD)

with the kinase Fyn (Figure 1A) (Lee et al., 1998). Fyn phosphor-

ylates the NR subunit 2 (NR2) to facilitate interaction of the NR

complex with the postsynaptic density protein 95 (PSD-95)

(Nakazawa et al., 2001; Rong et al., 2001; Tezuka et al., 1999),

linking NRs to synaptic excitotoxic downstream signaling (Salter

and Kalia, 2004). Disruption of the NR/PSD-95 interaction

prevents excitotoxic damage in cultured neurons and a rat

model of stroke, without affecting synaptic NMDA currents

(Aarts et al., 2002). Reduction of Fyn in APP transgenic mice

prevents Ab toxicity, while overexpression enhances it (Chin

et al., 2005; Chin et al., 2004).

To address how tau confers Ab toxicity, we generated trans-

genic mice (Dtau74) that express only the amino-terminal projec-

tion domain (PD) of tau and crossed them with Ab-forming

APP23 and tau�/� mice. We found that tau has an important

dendritic function, as in Dtau74 and tau�/� mice, postsynaptic

Fyn localization is reduced, resulting in reduced NR phosphory-

lation, destabilized NR/PSD-95 interaction, and protection from

excitotoxicity.

RESULTS

Truncated Tau Is Excluded from Dendrites
Tau comprises an amino-terminal projection domain, an MT

binding (MTB) domain that mediates interaction with MTs

(Butner and Kirschner, 1991; Lee et al., 1988) and is essential

for tau aggregation (Crowther et al., 1989; Ksiezak-Reding and

Yen, 1991) and a carboxy-terminal tail region (Figure 1A). We

generated truncated (Dtau) transgenic mice that express the

projection domain of tau in neurons, intended to compete with

functions of endogenous tau. Four phenotypically normal lines
388 Cell 142, 387–397, August 6, 2010 ª2010 Elsevier Inc.
expressed Dtau throughout the brain (Figure 1B) at comparable

levels, with line Dtau74 expressing the transgene at 1.4-fold

higher levels than endogenous tau (Figure 1C). Expression of

Dtau neither affected levels nor distribution of endogenous tau

(Figure 1C and Figures S1A–S1C available online). Consistent

with previous in vitro findings (Maas et al., 2000), Dtau localized

to the cell membrane, as indicated by coimmunostaining with

cadherin and subcellular fractionation of membranes (Figures

S1D and S1E). In AD and also full-length P301Lmutant tau trans-

genic pR5 mice, tau is hyperphosphorylated and redistributed

into the somatodendritic compartment (Figure 1D) (Götz et al.,

2001a). In contrast to full-length tau, Dtau, while in the soma,

was virtually excluded from dendrites (Figure 1D). In pR5

mice, tau becomes progressively hyperphosphorylated and

insoluble, and eventually the mice develop NFTs. Surprisingly,

Dtau in Dtau74 mice is hardly phosphorylated at all (Figure S1F).

Postsynaptic Targeting of Fyn Is Tau Dependent
Different from full-length human tau in pR5 mice, in the absence

of anMTB domain,Dtau fails to interact with MTs, as determined

byMT precipitation from hippocampi (Figure 2A). However, Dtau

contains motifs that mediate interaction with the Src kinase Fyn,

as shown in vitro (Lee et al., 1998). Accordingly, Fyn can be coim-

munoprecipitated with Dtau from Dtau74 hippocampi in vivo,

using a human tau-specific antibody (HT7) (Figure 2B). Immuno-

precipitation (IP) with tau-specific antibodies to epitopes not

present on the Dtau construct reveals a significantly reduced

interaction of Fyn with endogenous tau (Figure 2B). Likewise,

IP with Fyn antibodies shows a reduced interaction with endog-

enous tau in Dtau74 mice (Figure 2B). Together, this suggests

a dominant negative effect of Dtau on the normal interaction of

Fyn and endogenous tau. A similar effect on the Fyn/Tau
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Figure 2. Dtau Impairs Tau-Dependent

Dendritic Targeting of the Src Kinase Fyn

(A) Dtau from Dtau74 mice does not interact with

microtubules. Endogenous murine tau, but not

Dtau, precipitates with microtubules in extracts

from Dtau74 mice. In contrast, both full-length

human and endogenous murine tau precipitate

with microtubules in extracts from pR5 mice.

(B) Expression of Dtau results in a 74% ± 6%

(n = 8; *p < 0.01) reduced interaction of Fyn with

endogenous murine tau (mtau) compared to the

wild-type (wt), as revealed by coimmunoprecipita-

tion (coIP) with antibodies to endogenous murine

tau (mTau). In Dtau74 mice, Fyn instead coimmu-

noprecipitates with Dtau, as revealed by antibody

HT7. Similarly, in pR5 mice, Fyn precipitates with

full-length human tau (htau). CoIP with Fyn anti-

bodies predominantly pulled down endogenous

tau in WT, Dtau in Dtau74, and full-length human

tau in pR5 mice. No precipitation was observed

from tau�/� tissue.

(C) Fyn accumulates in cell bodies in Dtau74,

tau�/�, andDtau74.tau�/�mice.While Fyn staining

(red) colocalizes with dendritic drebrin (green) in

WT CA1 neurons, Fyn staining is evident in the

soma (S) and is reduced in the dendrites (D) of

Dtau74 and tau�/� neurons. The insets show

higher magnification of dendritic staining. The

scale bar represents 50 mm.

(D) Quantification of fluorescence intensity of Fyn

staining in cell bodies and dendrites shows accu-

mulation of Fyn in cell bodies of Dtau74, tau�/�,
and Dtau74.tau�/� mice (n = 15, *p < 0.0001).

(E) Total Fyn levels are not reduced in Dtau74 and

tau�/� mice. Western blots of hippocampal

extracts from WT, Dtau74, and tau�/� brains

show comparable levels of Fyn, normalized to

Gapdh (n = 6).

(F) Phosphorylation of activating (Y420) and inactivating (Y531) sites of immunopurified Fyn from WT, Dtau74, and tau�/� brains is similar.

(G) Hippocampal synaptosomal preparations reveal reduced levels of Fyn in Dtau74 and tau�/� postsynapses compared to the WT (n = 6, *p < 0.005).

Error bars represent the standard error. See also Figure S2.
interaction was obtained by overexpression of full-length tau in

pR5 mice (Figure 2B). Given the dendritic exclusion of Dtau in

Dtau74 in contrast to full-length tau in pR5 mice (Figure 1D),

we speculated that the aberrant Dtau/Fyn interaction might

affect the normal intracellular distribution of Fyn. Immunohisto-

chemistry showed that Fyn colocalized with drebrin in wild-

type (WT) brain, consistent with postsynaptic targeting, while in

Dtau74 brains it accumulated in the soma, an effect enhanced

by crossing of Dtau and tau�/� (Figures 2C and 2D). Together

with reduced dendritic Fyn staining, this suggests impaired

postsynaptic targeting of Fyn. To determine the role of tau in

dendritic localization of Fyn, we also analyzed tau�/� mice. Fyn

also accumulated in the soma (Figures 2C and 2D), suggesting

that postsynaptic targeting of Fyn is, at least in part, tau depen-

dent. This is consistent with reduced localization of Fyn-DsRED

in primary hippocampal neurons either from tau�/� mice or mice

coexpressingDtau (Figure S2). Interestingly, further truncation of

Dtau shows that the Fyn-interactive motif, PXXP (Lee et al.,

1998), is critical for Fyn localization.

Despite changes in the localization of Fyn, its total levels

and activity were comparable in Dtau74, tau�/�, and WT mice,
as determined by total and phosphorylation site-specific anti-

Fyn antibodies (Figures 2E and 2F). To quantify changes in the

subcellular localization of Fyn, we prepared synaptosomes

from WT, Dtau74, and tau�/� hippocampi. Consistent with the

immunohistochemical findings of reduced postsynaptic target-

ing, levels of synaptic Fyn were reduced by 73% and 62% in

Dtau74 and tau�/� mice, respectively, compared to WT controls

(Figure 2G). Taken together, both the presence of Dtau and

absence of endogenous tau impair synaptic localization of Fyn.

Uncoupled NMDA Receptors and PSD-95 in Dtau
and tau�/� Synapses
The postsynaptic NR subunit NR2b is a known substrate of

Fyn (Nakazawa et al., 2001). NR2b phosphorylation at Y1472

strengthens the NR/PSD-95 interaction (Rong et al., 2001). In

both Dtau74 and tau�/� mice, Y1472 phosphorylation is signifi-

cantly reduced compared to the WT, while total levels of NR1,

NR2a, and NR2b are unaffected (Figure 3A). To determine

whether this affects the stability of NR/PSD-95 complexes,

we performed coimmunoprecipitations (coIPs). Markedly less

NR1, NR2a, and NR2b coimmunoprecipitated with PSD-95
Cell 142, 387–397, August 6, 2010 ª2010 Elsevier Inc. 389



0

0.5

1.0

Y
14

72
 (f

ol
d 

of
 w

t)

D

C

Y1472

Gapdh

wt ∆tau74 tau-/-

NR1

NR2a

NR2b

Fyn

SNAP25

B

WB

wt ∆tau74 tau-/-

A

NR2b

wt

pH8

NR1

NR2a

NR2b

Fyn

PSD-95

SDS

∆tau74 tau-/-

NR1

NR2a

wt
∆tau74
tau-/-

PSD-95

E wt ∆tau74

wt ∆tau74 ∆tau74.tau-/-tau-/-

50 ms

50 pA

F

G

H

50 ms

50 pA

IP:PSD-95

mTau

HT7

Fyn

NR1

NR2a

NR2b

nNOS

Homer

*

*

*

*

*

*
*

*

*

*

*

N
R

1

1.0

0.5

0

N
R

2a

1.0

0.5

0

N
R

2b

1.0

0.5

0

m
Ta

u 1.0

0.5

0

Fy
n

1.0

0.5

0

Gap43

SNAP25

PSD-95

mTau

Fyn

NR1

NR2a

NR2b

total pH6 pH8 SDS

0

50

25

75

100

EP
SC

 (%
 N

R
2b

)

wt

∆tau
74

∆tau
74

.ta
u-
/-

tau
-/-

0

5

4

3

2

1Fr
eq

ue
nc

y 
(s

-1
)

wt

∆tau
74

∆tau
74

.ta
u-
/-

tau
-/-

0

80

60

40

20

M
in

i E
PS

C
 (p

A
)

wt

∆tau
74

∆tau
74

.ta
u-
/-

tau
-/-

0

6

4
3

5

2
1

EP
SC

 (N
M

D
A

/A
M

PA
)

wt

∆tau
74

∆tau
74

.ta
u-
/-

tau
-/-

∆tau74.tau-/-tau-/-

Figure 3. Destabilized NMDA Receptors in

the Postsynaptic Density of Dtau74 and

tau�/� Mice

(A) Levels of NR subunits NR1, NR2a and NR2b,

and PSD-95 are comparable in extracts from WT,

Dtau74, and tau�/� brains, whereas phosphoryla-

tion of NR2b at the Fyn site, Y1472, that is known

to stabilize NR/PSD-95 complexes (Roche et al.,

2001), is significantly reduced in Dtau74 and

tau�/� than in the WT (n = 6, *p < 0.005).

(B) PSD-95 antibodies coimmunoprecipitate much

less NR subunits NR1, NR2a, and NR2b from

Dtau74 and tau�/� than from WT hippocampi.

Similarly, coimmunoprecipitation (coIP) of Fyn

with PSD-95 is reduced in Dtau74 and tau�/�

compared to WT hippocampi, while that of nNOS

and Homer was unaffected. Endogenous murine

Tau (mTau) coprecipitates with PSD-95 from WT

hippocampi, while much less mTau, but no Dtau

(HT7), is recovered from Dtau74 hippocampi.

mTau is absent in tau�/� coIPs, consistent with

tau deficiency. (n = 3, *p < 0.005.)

(C) Sequential extraction of synaptosomes. Puri-

fied WT synaptosomes were further fractionated

with buffers of increasing stringency (pH6 <

pH8 < SDS), to purify proteins that are stably asso-

ciated with the PSD (Phillips et al., 2001). Brain

extracts (total) are loaded for comparison. NR

subunits NR1, NR2a and NR2b, PSD-95, tau,

and Fyn are purified in the SDS fraction, consistent

with strong anchoring in the PSD. Soluble proteins,

such as GAP43 and proteins that are not (such as

SNAP25) or less stably associated with the PSD,

are extracted with less stringent pH 6 and pH 8

buffers, respectively.

(D) SDS fractions from synaptosomes show that

stable anchoring of NRs in the PSD is reduced in

Dtau74 and tau�/� mice. While NRs are recovered

in the SDS fraction of WT synaptosomes, they are

primarily found in the pH 8 and hardly at all in SDS

fractions from Dtau74 and tau�/� mice.

(E) Representative traces of AMPAR- (gray) and

NR- (black) mediated components of electrically

evoked (e) EPSCs in CA1 hippocampal neurons from WT, Dtau74, tau�/�, and Dtau74.tau�/� mice (average of 12 sweeps per neuron) normalized with AMPAR-

mediated component. Neurons were voltage clamped and held at +40 mV. AMPAR-mediated eEPSCs are inverted for clarity. There is no significant difference of

NMDA/AMPA ratios between genotypes (n = 19–20).

(F) Representative traces of eEPSCs (average of 12 sweeps per neuron) separating total NMDAR-mediated and NR2b subunit-mediated components

(black traces, total NR eEPSC minus component in CP-101,606 [5 mM]) normalized to the amplitude of the total NR eEPSC. Neurons were voltage clamped

at +20 mV. NR2b EPSCs were obtained by subtraction of EPSCs generated in CP101 606 (5 mM) from total NR-mediated EPSCs, i.e., before CP applications.

There is no significant difference in the percentage of NR2b component between genotypes (n = 18–20).

(G and H) Mean amplitude (G) and rate (s�1) (H) of AMPAR-mediated mEPSCs (recorded in 1 mMTTX) were unaffected in Dtau74, tau�/�, and Dtau74.tau�/�mice

(n = 10–12).

Error bars represent the standard error. See also Figure S3.
from Dtau74 and tau�/� compared to WT extracts, consistent

with a decreased interaction of NR and PSD-95 in both strains

(Figure 3B). The PSD-95-interacting proteins Homer and

nNOS, however, were coimmunoprecipitated to a similar extent

from WT, Dtau74, and tau�/� brains, suggesting intact interac-

tions. The NR/PSD-95 interaction facilitates stable anchoring

of NRs in the postsynaptic density (PSD) (Roche et al., 2001).

Therefore, we next extracted purified synaptosomes from WT,

Dtau74, and tau�/� mice that show similar levels of NR subunits,

but reduced NR2b phosphorylation at Y1472 (Figure S3A), using
390 Cell 142, 387–397, August 6, 2010 ª2010 Elsevier Inc.
buffers of increasing stringency (Phillips et al., 2001). In line with

a strong PSD association in WT synaptosomes, NR subunits

were mostly found in the SDS fraction (Figure 3C and 3D). In

contrast, they were markedly reduced in Dtau74 and tau�/�,
appearing instead in earlier fractions, suggestive of a weakened

anchoring in the PSD (Figure 3D). Interestingly, endogenous

tau that was enriched by synaptosome preparation, recovered

in WT SDS fractions and coimmunoprecipitated with PSD-95

from WT, and to a lesser degree from Dtau74, brains (Figures

3B and 3C and Figure S1C).
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Figure 4. Dtau Expression Improves

Memory and Ameliorates Premature

Mortality of APP23 Mice

(A) APPswe transgenic APP23mice (n = 76) present

with a pronounced premature mortality that is

ameliorated by reducing tau levels in APP23.tau+/�

(n = 41, p < 0.001) and even more in APP23.tau�/�

mice (n = 108, p < 0.0001). Expression of Dtau

improves the survival of APP23.Dtau74 mice

(orange, n = 43, p < 0.01) similar to APP23.tau+/�.
Interestingly, combination of Dtau expression with

tau reduction completely rescues APP23.Dtau74.-

tau+/� (purple, n = 38, p < 0.0001) and

APP23.Dtau74.tau�/� (red, n = 52, p < 0.0001)

mice from lethality.

(B) Improved memory acquisition of APP23.D

tau74, APP23.tau�/�, and APP23.Dtau74.tau�/�

compared to APP23 mice in the T maze, 2 and 24

hr after a five-trial acquisition, at 8 months of age.

While WT, Dtau74, and tau�/� mice only make few

errors during the trials, memory deficits of APP23

mice are obvious from the continuously high

numbers of errors made during the entire test. In

contrast, both APP23.Dtau74, APP23.tau�/�, and
APP23.Dtau74.tau�/� mice presented with WT-

like numbers of errors (n = 8, *p < 0.05, **p < 0.01).

(C) In synaptosomal preparations obtained from 4-month-old APP23, both Fyn levels and NR2b phosphorylation at Y1472 are increased as compared to wild-

type (wt) mice (n = 6, *p < 0.05). However, in synaptosomes from APP23.Dtau74 and APP23.tau�/�, and even more in APP23.Dtau74.tau�/�, both levels of Fyn

and NR2b phosphorylation are significantly lower than in APP23 mice (n = 6, *p < 0.05, **p < 0.01). Representative western blots from three independent exper-

iments are shown.

(D–G) Dtau expression and tau deficiency do not affect APP mRNA expression, Ab levels, or plaque burden.

(D) Levels of APP mRNA are not altered in APP23 mice in the presence of Dtau or when tau is absent (tau�/�).
(E) Ab1–40 and Ab1–42 levels are comparable in APP23, APP23.Dtau74, and APP23.tau�/� mice.

(F and G) Thioflavine S staining (green) reveals Ab plaques (arrows; insets) at similar numbers (F) and with similar morphology (G) in APP23 mice, independent of

coexpression of Dtau or tau reduction.

Error bars represent the standard error. See also Figure S4.
The organization of NRs within the PSD is important for coor-

dinated signal transduction (Kim and Sheng, 2004). Hence, alter-

ations of NRs in Dtau74 and tau�/� mice may affect synaptic

currents. Therefore, we determined excitatory postsynaptic

currents (ESPCs) in acute hippocampal slices from WT,

Dtau74, tau�/�, and Dtau74.tau�/� mice. In Dtau74, tau�/�,
and Dtau74.tau�/� mice, we found np significant changes in

synaptic currents (Figure 3E). Similarly, no significant reduction

emerged in the contribution of NR2b-containing NRs to ESPCs

in Dtau74, tau�/�, and Dtau74.tau�/� mice (Figure 3F). Baseline

miniature amplitudes and frequency were also comparable

(Figures 3G and 3H and Figures S3B–S3D). Taken together,

these data indicate that both expression ofDtau or tau deficiency

reduces the interaction of NRs with PSD-95 without affecting

synaptic NR levels and currents.

Dtau Expression Prevents Premature Lethality
and Memory Deficits in APP23 Mice
It has been shown previously that perturbing the interaction of

NRs with PSD-95 had no effect on NR-mediated currents but

reduced the resilience of neurons to NMDA-mediated excitotox-

icity (Aarts et al., 2002). Interestingly, excitotoxicity has been

proposed to contribute to Ab toxicity in PDAPP mice, which

was reduced when the mice were crossed onto a tau�/� back-

ground (Roberson et al., 2007). APP expression per se may
contribute to toxicity in mice; however, primary disease-related

effects are attributed to Ab, as suggested by reverted deficits

in Ab-immunized APPmodels (Röskam et al., 2010) and absence

of seizure-induced hippocampal remodeling in APP transgenic

mice with low Ab levels (Palop et al., 2007). Excitotoxicity has

been linked to premature lethality in APP transgenic mice (Chis-

hti et al., 2001; El Khoury et al., 2007; Leissring et al., 2003;

Roberson et al., 2007). Hence, we speculated that in Dtau74

alterations in NR/PSD-95 interaction might similarly rescue the

early lethality that characterizes APPswe mutant APP23 mice

(Figures S4A and S4B) (Sturchler-Pierrat et al., 1997). APP23

mice have high Ab levels already at a very young age (Kuo

et al., 2001; Van Dam et al., 2003), eventually forming plaques

and presenting with neuronal loss and memory deficits (Calhoun

et al., 1998; Kelly et al., 2003; Sturchler-Pierrat et al., 1997).

When we crossed APP23 either with Dtau74 or tau�/� mice

(Figure S4C), this caused both a significantly delayed onset of

mortality and an improved overall survival (Figure 4A). Whereas

any rescue (either on a tau�/� background or by expressing

Dtau) was partial, expression of Dtau on a heterozygous or

homozygous tau-deficient background rescued lethality

completely, suggesting complementary beneficial effects of

tau deficiency and Dtau expression on survival (Figure 4A).

In contrast, crossing of APP23 mice with pR5 mice with an

increased dendritic accumulation of tau (Figure 1D) (Götz et al.,
Cell 142, 387–397, August 6, 2010 ª2010 Elsevier Inc. 391
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Figure 5. Dtau Expression Reduces Susceptibility to Excitotoxic

Seizures

(A) When excitotoxic seizures were induced by i.p. injection of PTZ (50 mg/kg),

mean seizure severity was significantly reduced in both Dtau74, tau�/�, and
Dtau74.tau�/� compared to WT mice (n = 10, **p < 0.01, ***p < 0.001).

(B) Similarly, the latency to more severe seizure stages is increased in Dtau74,

tau�/�, and Dtau74.tau�/� mice.

(C) In APP23 mice, PTZ-induced seizures are mostly lethal (10 of 11), whereas

in APP23.Dtau74, APP23.tau�/�, and APP23.Dtau74.tau�/� seizure severity is

markedly reduced (n = 10, *p < 0.05, **p < 0.01, ***p < 0.001).

(D) APP23.Dtau74, APP23.tau�/�, and APP23.Dtau74.tau�/� mice show an

increased latency to more severe seizures compared to APP23 mice.

(E and F) Pretreatment of WT or APP23 mice with MK801 (0.1 mg/kg) reduced

seizure severity (n = 8, p < 0.05) (E) and increased latency to more severe

seizures (F).

Error bars represent the standard error.
2001a), resulted in increased premature lethality, with no survival

beyond 4 months of age (Figure S4D). Interestingly, both Fyn

levels and Y1472 phosphorylation of NR2b are increased in

pR5 synaptosomes (Figure S4E). Because of possible confound-

ing effects of APP overexpression and Ab formation in APP

mutant mouse strains, we used also primary neurons treated

with Ab, in the absence of APP overexpression, as a model. In

tau�/� and Dtau74-expressing neurons, acute Ab toxicity was

markedly reduced (Figure S2E). Interestingly, deletion of the

Fyn-interacting motif, PXXP (Lee et al., 1998), from Dtau abro-

gated the protective effect.

We next determined whether Dtau expression or tau reduction

also improves memory functions in APP23 mice. Memory defi-

cits were both improved to WT levels in APP23.Dtau74

and APP23.tau�/� mice using the water T maze (Figure 4B).

Consistent with the findings in Dtau and tau�/� mice, both

synaptic Fyn levels and NR2b phosphorylation were reduced

in APP23.Dtau74 and APP23.tau�/� and even more so in

APP23.Dtau74.tau�/� synaptosomes, while they were increased

in APP23 compared to WT brains (Figure 4C). Interestingly, in

APP23 mice, neither Dtau expression nor tau reduction affected

humanAPPmessenger RNA (mRNA) levels (Figure 4D), Ab levels

(Figure 4E), or plaque burden (Figures 4F and 4G). Similarly,

phosphorylation of endogenous tau was comparable in APP23

and APP23.Dtau74 mice (data not shown). Taken together,

expression of Dtau in APP23 or crossing of APP23 with tau�/�

mice reduces Fyn-mediated NR2b phosphorylation, attenuates

premature mortality, and improves memory deficits without

changing Ab levels or plaque load.

Dtau Reduces Susceptibility to Excitotoxic Seizures
Ab-induced aberrant excitatory neuronal activity may contribute

to the deficits that characterize ADmousemodels (Busche et al.,

2008; Palop and Mucke, 2009). APP23 mice show spontaneous

seizures (Lalonde et al., 2005), similar to other APP transgenic

strains (Minkeviciene et al., 2009; Palop et al., 2007; Palop and

Mucke, 2009). Hence, reduced mortality of APP23.Dtau74 and

APP.tau�/� mice may be related to a reduced susceptibility to

excitotoxic seizures. We therefore first induced convulsions in

Dtau74, tau�/�, Dtau74.tau�/�, and WT mice using the g-amino-

butyrate (GABA) antagonist pentylenetetrazole (PTZ). Seizure

severity was significantly reduced in Dtau74, tau�/�, and

Dtau74.tau�/� compared to theWT (Figure 5A), while the latency

to develop severe convulsion increased (Figure 5B). Next, we

induced seizures in APP23, APP23.Dtau74, APP23.tau�/�, and
APP23.Dtau74.tau�/� mice. APP23 mice presented with a

reduced convulsion latency and showed themost severe seizure

response, with the lowest survival rate (1/11) and all mice reach-

ing status epilepticus (n = 11) (Figure 5C). However, when APP

expression was combined with Dtau expression or tau defi-

ciency, this significantly decreased seizure severity, reduced

fatality, and increased convulsion latency (Figures 5C and 5D).

The double mutant Dtau74.tau�/� prevented severe seizures

better thanDtau74 or tau�/� alone, on bothWT and APP23 back-

grounds, in agreement with the survival data (Figure 4A). Inter-

estingly, we found a similar degree of protection from PTZ-

induced seizures as in Dtau74, tau�/�, APP23.Dtau74, or

APP23.tau�/� mice when we pretreated WT and APP23 mice,
392 Cell 142, 387–397, August 6, 2010 ª2010 Elsevier Inc.



pre
-tr

ea
tm

en
t

tre
atm

en
t

was
h

PI an
aly

sis

1h 1h 24h 5’

A

DOB
i.c

.v.
 pu

mp

pu
mp
ch

an
ge

d

pu
mp
rem

ov
ed

6wks 28d 28d

F

1st
 p

um
p

2nd
 p

um
p

0 30 60 240
0

25

50

75

100

Tat-NR2B9c 
(n=17)

Tat-NR2BAA 
(n=9)

aCSF (n=11)

days after implantation

Pe
rc

en
ta

ge
 s

ur
vi

va
l

Gcontrol
H2O2
Staurosporine
NMDA
Aβ (1μM)
Aβ (0.1μM)
Aβ (1μM) + NMDA
Aβ (0.1μM) + NMDA

C

0

20

40

60

80

100

vehicle Tat-NR2BAA Tat-NR2B9c

*
* *

* *

## ##
####

##
##

##

##

####
####

#

#

%
 o

f d
yi

ng
 c

el
ls

D
wtTa

t-N
R2B

AA

Ta
t-N

R2B
9c

∆tau
74

tau
-/-

PSD-95

in
pu

t
IP

NR1

Gapdh

Tau-5

PSD-95
NR1

E

Ta
t-N

R2B
AA

Ta
t-N

R2B
9c

0

1

2

3

4

5

6

7

Se
iz

ur
e 

Se
ve

rit
y

*B AβNMDAcontrol

ve
hi

cl
e

Ta
t-N

R
2B

9c
Ta

t-N
R

2B
A

A

PI/Hoechst

Er
ro

rs
 (T

-m
az

e)

H

0

4

3

2

1

Ta
t-N

R2B
9c

un
tre

ate
d

aC
SF

***

*

4mo 8mo

Figure 6. Peptide-Driven Uncoupling of the

NR/PSD-95 Interaction Reduces Ab Toxicity

and Improves Survival and Memory of

APP23 Mice

(A) Twenty-day-old primary cortical neurons were

pretreated with 100 nM Tat-NR2B9c peptide,

which disrupts the NR/PSD-95 interaction (Aarts

et al., 2002), prior to treatment with the toxins

NMDA, Ab, H2O2, and staurosporine. Twenty-

four hours after treatment, cell death was deter-

mined by propidium iodide (PI) uptake. Control

cells were pretreated with vehicle or 100 nM Tat-

NR2BAA (inactive peptide).

(B and C) Tat-NR2B9c (bottom row) significantly

reduces toxicity of NMDA and Ab to cortical

neurons, as indicated by lower numbers of PI-

positive cells (red; arrows) compared to pretreated

vehicle (top row) or Tat-NR2BAA (middle row)

controls. Nuclei were stained with Hoechst

(blue). Treatment with H2O2, staurosporine,

NMDA, Ab, or NMDA/Ab causes significant cell

death (#p < 0.005, ##p < 0.0001), which for

NMDA- and Ab-treated neurons is reduced by

pretreatment with Tat-NR2B9c, but not for H2O2-

and staurosporine-treated neurons (*p < 0.05,

**p < 0.01). One hundred cells each were counted

in three independent experiments. The scale bar

represents 25 mm.

(D) Immunoprecipitation (IP) with a PSD-95 antibody from hippocampus of WT mice that were i.c.v. infused with Tat-NR2B9c and Tat-NR2BAA for 1 week, and

from untreated WT, Dtau74, and tau�/� mice. Less NRs were coimmunoprecipitated upon Tat-NR2B9c, but not Tat-NR2BAA treatment. The reduction was

comparable to Dtau74 and tau�/� mice.

(E) One week of i.c.v. infusion of Tat-NR2B9c reduced PTZ-induced seizure severity significantly, compared to inactive Tat-NR2BAA (n = 10, *p < 0.01).

(F) APP23 mice treated with vehicle (artificial cerebrospinal fluid [aCSF]) alone or together with Tat-NR2B9c or Tat-NR2BAA, using osmotic mini pumps. DOB,

date of birth.

(G) Survival of APP23 mice upon i.c.v. delivery of Tat-NR2B9c (n = 17) is markedly improved compared to vehicle (aCSF)-treated (n = 11, p < 0.01) and Tat-

NR2BAA-treated (n = 9, p < 0.05) controls. Gray boxes indicate time of drug delivery from two consecutively implanted pumps.

(H) Tat-NR2B9c-treated APP23 mice showmarkedly improved memory functions at 4 and 8 months after initiating treatment, compared to aCSF-treated or age-

matched untreated APP23 mice (n = 8, n = 4 for aCSF, *p < 0.05, **p < 0.01).

Error bars represent the standard error.
respectively, with the NR-antagonist MK801 (Figures 5E and 5F).

Hence, reduced susceptibility to excitotoxicity is consistent with

a reduced NR contribution and may contribute to reduced

mortality in APP23 mice in the presence of Dtau or absence of

endogenous tau.

Targeted Uncoupling of NR and PSD-95 Prevents
Premature Death and Memory Seficits in APP23 Mice
Provided that disturbed NR/PSD-95 complexes with a reduced

dendritic Fyn localization in Dtau74 and tau�/� mice contribute

to improved memory functions and survival of APP23.Dtau74

and APP23.tau�/� mice, targeted perturbation of the NR/PSD-

95 interaction, independent of tau or Fyn, should also decrease

Ab toxicity. Therefore, we treated primary cortical cultures with

the Tat-NR2B9c peptide composed of carboxy-terminal amino

acids of NR2b (including Y1472) fused to a HIV1-Tat peptide to

achieve cell membrane permeability (Figure 6A). Tat-NR2B9c

has been shown previously to protect fromNMDA-induced exci-

totoxicity (Aarts et al., 2002; Kornau et al., 1995). As a negative

control, we included Tat-NR2BAA in which critical amino acids

were replaced by alanine (Aarts et al., 2002; Kornau et al.,

1995). NMDA and Ab both induced pronounced cell death, while

a combined NMDA/Ab treatment did not further increase cell
death, consistent with shared signaling pathwaysmediating their

toxicity (Figures 6B and 6C). Cell death induced by NMDA and

Ab, both separate and in combination, was significantly reduced

by preincubation with Tat-NR2B9c, but not when induced by

hydrogen peroxide or staurosporine (Figures 6B and 6C). Tat-

NR2BAA had no protective effects. Hence, perturbing the NR/

PSD-95 interaction with Tat-NR2B9c ameliorates Ab-mediated

toxicity in vitro.

Next, we tested in vivowhether APP23micewould also benefit

from treatment with Tat-NR2B9c. A single dose of this peptide

has previously been shown to confer virtually complete protec-

tion from excitotoxic damage in a rat model of stroke (Aarts

et al., 2002). First, we determined whether sufficient NR/

PSD-95 uncoupling was achieved by intracerebroventricular

(i.c.v.) Tat-NR2B9c treatment, using osmotic minipumps. We

delivered either Tat-NR2B9c or Tat-NR2BAA for 1 week and

then performed coIP with a PSD-95 antibody (Figure 6D). This

revealed a reduced NR/PSD-95 interaction upon Tat-NR2B9c,

but not Tat-NR2BAA, treatment. The level of reduction was

similar to that found in Dtau74 and tau�/� brains (Figure 6D).

Sufficient uptake of peptides by the brain was further confirmed

by protection from PTZ-induced seizures by Tat-NR2b9c, but

not Tat-NR2BAA (Figure 6E). Next, we implanted minipumps
Cell 142, 387–397, August 6, 2010 ª2010 Elsevier Inc. 393
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Figure 7. Simplified Scheme of the

Proposed Mechanism Underlying Reduced

Excitotoxicity in Dtau74 and tau�/� Mice

Compared to the Wild-Type

(A) Postsynaptic NMDA receptors (NRs) are het-

eromeric complexes predominantly formed by

subunits NR1, NR2A, and NR2B. The Src kinase

Fyn localizes to the postsynapse in a tau-depen-

dent manner and associates with the postsynaptic

density (PSD; gray box), where it phosphorylates

(P) the NR subunit NR2b at Y1472 in the extreme

carboxy terminus. This phosphorylation facilitates

the interaction of NRs with the scaffolding protein

PSD-95. This interaction increases the stability of

NRs within the PSD and couples NRs to excito-

toxic downstream signaling (skull). NR-mediated

currents (ESPC trace), however, do not depend

on this NR/PSD-95 interaction. Whether tau is

associated with the PSD via Fyn or another inter-

action partner remains to be elucidated.

(B) In Dtau74 mice, Dtau is excluded from entering dendrites. Since Fyn interacts with Dtau (red bar) in the cell body of neurons, it is therefore trapped and less

localized to dendrites. Also, phosphorylation of NR2b and the interaction of NRs and PSD-95 are markedly reduced. Hence, excitotoxic downstream signaling is

uncoupled from NRs and their stability within the PSD is reduced. As NR-mediated currents are not dependent on this interaction, they are not affected.

(C) As forDtau74 mice, in tau�/�mice, tau-dependent localization of Fyn to the postsynapse is also markedly reduced. NR2b phosphorylation and the interaction

of NRs and PSD-95 are decreased. Thus, excitotoxic downstream signaling is uncoupled fromNRs, and their stability within the PSD is reduced. Again, NR-medi-

ated currents are not affected.
into 6-week-old APP23 mice for i.c.v. delivery of artificial cere-

brospinal fluid (aCSF), with and without Tat-NR2B9c or Tat-

NR2BAA (Figure 6F). Mice in the aCSF and Tat-NR2BAA control

groups died frequently (7 of 11 and 4 of 9, respectively), whereas

only 1 of 17 mice died in the Tat-NR2B9c group (Figure 6E).

Finally, we tested whether Tat-NR2B9c-treatment has long-

term effects on memory in APP23 mice. The T maze revealed

comparable memory deficits in age-matched aCSF-treated

and untreated APP23 mice (Figure 6F). However, treatment

with Tat-NR2B9c resulted in a significantly improved perfor-

mance. Thus, perturbing NR/PSD-95 interaction is sufficient

to prevent premature lethality and memory deficits in APP23

mice.

DISCUSSION

Dendritic Localization of Fyn Is Tau-Dependent
Our data reveal a dendritic function of the ‘‘axonal’’ protein tau, in

targeting the kinase Fyn to the dendrite (Figure 7). We also found

an association of tau with the PSD complex by using coIP, PSD

purification, and immunohistochemistry with enhanced antigen

retrieval. It is important to note that levels of tau in the dendritic

compartment are much lower than in axons, suggesting that

under physiological conditions amajor function of tau is in axonal

MT stabilization and regulation of MT-dependent processes

(Dixit et al., 2008; Weingarten et al., 1975). Here, we show that

the additional role of tau in dendrites becomes pivotal in disease,

in particular in mediating early Ab toxicity.

In both Dtau74 and tau�/� mice, dendritic targeting of Fyn is

significantly reduced, as revealed by immunohistochemistry

and synaptosomal purification and confirmed in primary

neurons. In Dtau74 mice, this is due to a competition of Dtau

with endogenous tau in the interaction with Fyn. Both the abun-

dance of Dtau in the cell body and its exclusion from dendrites
394 Cell 142, 387–397, August 6, 2010 ª2010 Elsevier Inc.
result in ‘‘trapping’’ of Fyn in the soma. Tau�/� mice, in compar-

ison, show a similar accumulation of Fyn, suggesting that post-

synaptic Fyn targeting requires tau. This difference in mediating

aberrant sorting of Fyn between Dtau74 and tau�/� mice

(Figure 7) may explain the additive effects on seizure suscepti-

bility and survival in Dtau.tau�/� crosses. Reduced levels of

postsynaptic Fyn in Dtau74 and tau�/� mice are associated

with reduced phosphorylation of the Fyn-substrate NR2b at

Y1472. Consistent with a critical role of Y1472 phosphorylation

in facilitating the interaction of NRs with PSD-95 (Rong et al.,

2001), this complex is reduced and destabilized in Dtau74 and

tau�/� brains. Whether the Fyn-mediated stabilization of NR/

PSD-95 complexes in the PSD under physiological conditions

involves a direct interaction with tau and what the exact mecha-

nism(s) of tau-mediated dendritic Fyn localization are remains to

be established.

In a rat model of stroke, targeted disruption of the NR/PSD-95

interaction prevented excitotoxic damage and reduced the

lesion size (Aarts et al., 2002). Consistent with this, reduced

NR/PSD-95 complexes in Dtau74 and tau�/� mice were associ-

ated with a reduced susceptibility to excitotoxicity. Interestingly,

NR-mediated currents were not affected in Dtau74 and tau�/�

mice, which is in line with normal synaptic activity upon treat-

ment with Tat-NR2B9c (Aarts et al., 2002). Normal NR-mediated

currents in Dtau74 and tau�/� mice may be explained by

reduced, but not totally depleted, synaptic Fyn in Dtau74 and

tau�/� mice, comparable to the situation in heterozygous fyn-

deficient mice that have no overt deficits (Yagi et al., 1993), while

in homozygous fyn-deficient mice these are pronounced (Grant

et al., 1992).

Dtau and tau�/� Prevent Deficits of APP23 Mice
Excitotoxicity is increasingly recognized as a mechanism of how

Ab exerts toxicity in AD. Accordingly, we found that crossing



of Dtau74 and tau�/� mice, both characterized by reduced

susceptibility to excitotoxicity, with Ab-forming APP23 mice

ameliorated premature mortality and memory deficits of APP23

mice. In contrast, early lethality was more pronounced in

APP23 mice crossed with pR5. Similarly, tau deficiency or Dtau

expression conferred protection from Ab-induced toxicity in

primary neuronal cultures. However, Ab levels and plaque forma-

tion, as well as endogenous tau phosphorylation (in APP23.D

tau74), were comparable in APP23 mice, suggesting an alterna-

tive mechanism for protection. Interestingly, in APP23 mice we

found both increased postsynaptic Fyn and Y1472 phosphoryla-

tion of NR2b that was completely reverted in APP23.Dtau74 and

APP23.tau�/� mice. Further reduction of post-synaptic Fyn in

APP23.Dtau74.tau�/� mice suggests additional tau-indepen-

dentmechanisms in dendritic Fyn localization, which are partially

competed with by Dtau. Consistent with a role for Fyn in Ab

pathology, Fyn transgenic mice present with seizures and

premature mortality (Kojima et al., 1998). This is exacerbated in

Fyn/APPmut double-transgenic mice (Chin et al., 2004). More-

over, APP-associated mortality is reduced on a fyn�/� back-

ground (Chin et al., 2004). Hence, our findings in APP23.Dtau74

and APP23.tau�/� mice are consistent with previous data (Chin

et al., 2005; Chin et al., 2004). Furthermore, they are in line

with the recent observation that crossing of PDAPP mice onto

a tau�/� background reverses Ab-associated defects (Roberson

et al., 2007).

Mechanistically, our data suggest that stable NR/PSD-95

complex formation is required for Ab toxicity in APP23 mice.

This is likely to contribute to disease together with other tau-

dependent and -independent mechanisms of Ab toxicity. In

support of our findings, we used a tau/Fyn-independent

approach to disrupt this interaction, by delivering the Tat-

NR2B9c peptide to young APP23 mice. This peptide has been

shown to protect from excitotoxicity in vitro and in vivo.

We show specifically that perturbing the NR/PSD-95 interac-

tion with the Tat-NR2B9c peptide improves survival and

memory functions of APP23 mice. The data suggest that disrup-

tion of the NR/PSD-95 interaction is sufficient to prevent

Ab toxicity involving NR signaling. Remarkably, Tat-NR2B9c-

treated APP23 mice survived long term, suggesting that treat-

ment within a short therapeutic window is sufficient to prevent

lethality.

In summary, we reveal a dendritic role for the ‘‘axonal’’

protein tau in postsynaptic targeting of Fyn. This involves inter-

action of Fyn with the tau projection domain (Lee et al., 1998).

Accordingly, dominant negative effects of Dtau expression or

tau deficiency result in reduced postsynaptic Fyn, decreased

phosphorylation of its substrate NR2b and instability of NR/

PSD-95 complexes (in Dtau74 and tau�/� mice). Importantly,

this additional function of tau appears to be pivotal for medi-

ating Ab toxicity, in that premature lethality, memory deficits,

and seizure susceptibility of APP23 mice were mitigated in

APP23.Dtau74 and APP23.tau�/� mice. Hence, reduction of

tau levels or targeting of tau-dependent mechanisms, such as

the Fyn-mediated interaction of NRs and PSD-95, are suitable

strategies in the treatment of AD and related disorders, high-

lighting tau as an attractive drug target, in addition to Ab

(Ashe, 2007).
EXPERIMENTAL PROCEDURES

Animals

APP23 and pR5 transgenic and tau�/� mice have been generated previously

(Götz et al., 2001a; Sturchler-Pierrat et al., 1997; Tucker et al., 2001). The

generation of Dtau74 mice is described in the Extended Experimental Proce-

dures. Two- to three-month-old mice were analyzed in age- and sex-matched

groups, unless stated otherwise. All animal experiments were approved by the

Animal Ethics Committee of the University of Sydney.

Histology, Western Blotting, IP, and Synaptosome Preparation

Detailed protocols are provided in the Extended Experimental Procedures.

Electrophysiology

Electrophysiological recording were done in acute hippocampal slices

obtained from 4- to 8-week-old wild-type, Dtau74, tau�/�, and Dtau74.tau�/�

mice as described in detail in the Extended Experimental Procedures.

Experimental Seizures

Seizures were induced by intraperitoneal (i.p.) injection of (50 mg/kg body

weight) pentylenetetrazole (PTZ; Sigma) as described (Roberson et al.,

2007). Where indicated, mice were injected i.p. with (0.1 mg/kg body weight)

MK801 (Sigma) 30 min prior to PTZ administration. Mice were video moni-

tored, and seizure severity was rated by an independent, blinded person, as

follows: 0, no seizures; 1, immobility; 2, tail extension; 3, forelimb clonus; 4,

generalized clonus; 5, bouncing seizures; 6, full extension; and 7, death.

i.c.v. Treatment with Osmotic Pumps

Six-week-old APP23 and WT mice were anesthetised with ketamine/xylazine,

and i.c.v. delivery cannulas (Alzet; brain infusion kit #3 with one spacer) were

implanted with a stereotaxic frame (KOPF Instruments) at the following

coordinates according to the bregma: AP, �0.25 mm; ML, 1 mm; and DV,

�2.5 mm. Osmotic mini pumps (Alzet; model #1004) were filled with aCSF

(Alzet) with and without Tat-NR2B9c or Tat-NR2BAA peptide (750 mM) and

equilibrated in 0.9% NaCl at 37�C for 48 hr. They were attached to the i.c.v.

cannula tubing and subcutaneously implanted at the back. After 28 days,

the pumps were replaced with a second batch of pumps via a small skin inci-

sion for another 28 days. Then, they were removed and the tubing was ligated.

Statistics

Statistics was done with the Prizm 4 software (GraphPad) with Student’s t or

two-way ANOVA test. Values are given as mean ± standard error.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures and

four figures and can be found with this article online at doi:10.1016/j.cell.

2010.06.036.
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as Hanns Möhler and Nikolas Haass for helpful comments. This research was

supported by grants from the University of Sydney, National Health and

Medical Research Council, Australian Research Council, and Deutsche

Forschungsgemeinschaft. J.G. is a Medical Foundation Fellow.

Received: December 14, 2009

Revised: April 6, 2010

Accepted: May 28, 2010

Published online: July 22, 2010

REFERENCES

Aarts, M., Liu, Y., Liu, L., Besshoh, S., Arundine, M., Gurd, J.W., Wang, Y.T.,

Salter, M.W., and Tymianski, M. (2002). Treatment of ischemic brain damage
Cell 142, 387–397, August 6, 2010 ª2010 Elsevier Inc. 395

http://dx.doi.org/doi:10.1016/j.cell.2010.06.036
http://dx.doi.org/doi:10.1016/j.cell.2010.06.036


by perturbing NMDA receptor- PSD-95 protein interactions. Science 298,

846–850.

Ashe, K.H. (2007). A tale about tau. N. Engl. J. Med. 357, 933–935.

Ballatore, C., Lee, V.M., and Trojanowski, J.Q. (2007). Tau-mediated neurode-

generation in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci. 8,

663–672.

Busche, M.A., Eichhoff, G., Adelsberger, H., Abramowski, D., Wiederhold,

K.H., Haass, C., Staufenbiel, M., Konnerth, A., and Garaschuk, O. (2008).

Clusters of hyperactive neurons near amyloid plaques in a mouse model of

Alzheimer’s disease. Science 321, 1686–1689.

Butner, K.A., and Kirschner, M.W. (1991). Tau protein binds to microtubules

through a flexible array of distributed weak sites. J. Cell Biol. 115, 717–730.

Calhoun, M.E., Wiederhold, K.H., Abramowski, D., Phinney, A.L., Probst, A.,

Sturchler-Pierrat, C., Staufenbiel, M., Sommer, B., and Jucker, M. (1998).

Neuron loss in APP transgenic mice. Nature 395, 755–756.

Chin, J., Palop, J.J., Yu, G.Q., Kojima, N., Masliah, E., and Mucke, L. (2004).

Fyn kinase modulates synaptotoxicity, but not aberrant sprouting, in human

amyloid precursor protein transgenic mice. J. Neurosci. 24, 4692–4697.
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Röskam, S., Neff, F., Schwarting, R., Bacher, M., and Dodel, R. (2010). APP

transgenic mice: the effect of active and passive immunotherapy in cognitive

tasks. Neurosci. Biobehav. Rev. 34, 487–499.

Salter, M.W., and Kalia, L.V. (2004). Src kinases: a hub for NMDA receptor

regulation. Nat. Rev. Neurosci. 5, 317–328.

Selkoe, D.J. (1997). Alzheimer’s disease: genotypes, phenotypes, and treat-

ments. Science 275, 630–631.

Selkoe, D.J. (2002). Alzheimer’s disease is a synaptic failure. Science 298,

789–791.

Shankar, G.M., Li, S., Mehta, T.H., Garcia-Munoz, A., Shepardson, N.E.,

Smith, I., Brett, F.M., Farrell, M.A., Rowan, M.J., Lemere, C.A., et al. (2008).
Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair

synaptic plasticity and memory. Nat. Med. 14, 837–842.

Sturchler-Pierrat, C., Abramowski, D., Duke, M., Wiederhold, K.H., Mistl, C.,

Rothacher, S., Ledermann, B., Bürki, K., Frey, P., Paganetti, P.A., et al.

(1997). Two amyloid precursor protein transgenic mouse models with Alz-

heimer disease-like pathology. Proc. Natl. Acad. Sci. USA 94, 13287–13292.

Tezuka, T., Umemori, H., Akiyama, T., Nakanishi, S., and Yamamoto, T. (1999).

PSD-95 promotes Fyn-mediated tyrosine phosphorylation of the N-methyl-D-

aspartate receptor subunit NR2A. Proc. Natl. Acad. Sci. USA 96, 435–440.

Tucker, K.L., Meyer, M., and Barde, Y.A. (2001). Neurotrophins are required for

nerve growth during development. Nat. Neurosci. 4, 29–37.

VanDam, D., D’Hooge, R., Staufenbiel, M., VanGinneken, C., VanMeir, F., and

De Deyn, P.P. (2003). Age-dependent cognitive decline in the APP23 model

precedes amyloid deposition. Eur. J. Neurosci. 17, 388–396.

Weingarten, M.D., Lockwood, A.H., Hwo, S.Y., and Kirschner, M.W. (1975).

A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci.

USA 72, 1858–1862.

Yagi, T., Aizawa, S., Tokunaga, T., Shigetani, Y., Takeda, N., and Ikawa, Y.

(1993). A role for Fyn tyrosine kinase in the suckling behaviour of neonatal

mice. Nature 366, 742–745.

Zhao, L., Ma, Q.L., Calon, F., Harris-White, M.E., Yang, F., Lim, G.P., Morihara,

T., Ubeda, O.J., Ambegaokar, S., Hansen, J.E., et al. (2006). Role of p21-acti-

vated kinase pathway defects in the cognitive deficits of Alzheimer disease.

Nat. Neurosci. 9, 234–242.
Cell 142, 387–397, August 6, 2010 ª2010 Elsevier Inc. 397


	Dendritic Function of Tau Mediates Amyloid-β Toxicity in Alzheimer's Disease Mouse Models
	Introduction
	Results
	Truncated Tau Is Excluded from Dendrites
	Postsynaptic Targeting of Fyn Is Tau Dependent
	Uncoupled NMDA Receptors and PSD-95 in Δtau and tau−/− Synapses
	Δtau Expression Prevents Premature Lethality and Memory Deficits in APP23 Mice
	Δtau Reduces Susceptibility to Excitotoxic Seizures
	Targeted Uncoupling of NR and PSD-95 Prevents Premature Death and Memory Seficits in APP23 Mice

	Discussion
	Dendritic Localization of Fyn Is Tau-Dependent
	Δtau and tau−/− Prevent Deficits of APP23 Mice

	Experimental Procedures
	Animals
	Histology, Western Blotting, IP, and Synaptosome Preparation
	Electrophysiology
	Experimental Seizures
	i.c.v. Treatment with Osmotic Pumps
	Statistics

	Supplemental Information
	Acknowledgments
	References


