9 research outputs found

    Generation of human induced pluripotent stem cells using non-synthetic mRNA

    Get PDF
    Here we describe some of the crucial steps to generate induced pluripotent stemcells (iPSCs) usingmRNA transfection. Our approach uses a V. virus-derived capping enzyme instead of a cap-analog, ensuring 100% proper cap orientation for in vitro transcribedmRNA. V. virus\'' 2′-O-Methyltransferase enzymecreates a cap1 structure found in higher eukaryotes and has higher translation efficiency compared to other methods. Use of the polymeric transfection reagent polyethylenimine proved superior to other transfection methods. The mRNA created via this method did not trigger an intracellular immune response via human IFN-gamma (hIFN-γ) or alpha (hIFN-α) release, thus circumventing the use of suppressors. Resulting mRNA and protein were expressed at high levels for over 48 h, thus obviating daily transfections. Using this method, we demonstrated swift activation of pluripotency associated genes in human fibroblasts. Low oxygen conditions further facilitated colony formation. Differentiation into different germ layers was confirmed via teratoma assay. Reprogramming with non-synthetic mRNA holds great promise for safe generation of iPSCs of human origin. Using the protocols described herein we hope to make this method more accessible to other groups as a fast, inexpensive, and non-viral reprogramming approach

    Error-bounded GPU-supported terrain visualisation

    Get PDF
    The interactive visualisation of digital terrain datasets deals with their interrelated issues: quality, time and resources. In this paper a GPU-supported rendering technique is introduced, which finds a tradeoff between these issues. For this we use the projective grid method as the foundation. Even though the method is simple and powerful, its most significant problem is the loss of relevant features. Our contribution is a definition of a view-dependent grid distribution on the view-plane and an error-bounded rendering. This leads to a better approximation of the original terrain surface compared to previous GPU-based approaches. A higher quality is achieved with respect to the grid resolution. Furthermore the combination with an error metric and ray casting enables us to render a terrain representation within a given error threshold. Hence, high quality interactive terrain rendering is guaranteed, without expensive preprocessing

    De novo loss- or gain-of-function mutations in KCNA2 cause epileptic encephalopathy

    No full text
    Epileptic encephalopathies are a phenotypically and genetically heterogeneous group of severe epilepsies accompanied by intellectual disability and other neurodevelopmental features1–6. Using next-generation sequencing, we identified four different de novo mutations in KCNA2, encoding the potassium channel KV1.2, in six patients with epileptic encephalopathy (one mutation recurred three times independently). Four individuals presented with febrile and multiple afebrile, often focal seizure types, multifocal epileptiform discharges strongly activated by sleep, mild to moderate intellectual disability, delayed speech development and sometimes ataxia. Functional studies of the two mutations associated with this phenotype showed almost complete loss of function with a dominant-negative effect. Two further individuals presented with a different and more severe epileptic encephalopathy phenotype. They carried mutations inducing a drastic gain-of-function effect leading to permanently open channels. These results establish KCNA2 as a new gene involved in human neurodevelopmental disorders through two different mechanisms, predicting either hyperexcitability or electrical silencing of KV1.2-expressing neurons

    Correction to: Incidence of severe sepsis and septic shock in German intensive care units: the prospective, multicentre INSEP study

    No full text

    Incidence of severe sepsis and septic shock in German intensive care units: the prospective, multicentre INSEP study

    No full text
    corecore