
Error-bounded GPU-supported terrain visualisation

Falko Löffler
University of Rostock, Germany

Albert-Einstein-Strasse 21
18055, Rostock

falko.loeffler@uni-rostock.de

Stefan Rybacki
University of Rostock, Germany

Albert-Einstein-Strasse 21
18055, Rostock

stefan.rybacki@uni-rostock.de

Heidrun Schumann
University of Rostock, Germany

Albert-Einstein-Strasse 21
18055, Rostock

schumann@informatik.uni-
rostock.de

ABSTRACT

The interactive visualisation of digital terrain datasets deals with their interrelated issues: quality, time and resources. In this

paper a GPU-supported rendering technique is introduced, which finds a tradeoff between these issues. For this we use the

projective grid method as the foundation. Even though the method is simple and powerful, its most significant problem is

the loss of relevant features. Our contribution is a definition of a view-dependent grid distribution on the view-plane and an

error-bounded rendering. This leads to a better approximation of the original terrain surface compared to previous GPU-based

approaches. A higher quality is achieved with respect to the grid resolution. Furthermore the combination with an error metric

and ray casting enables us to render a terrain representation within a given error threshold. Hence, high quality interactive

terrain rendering is guaranteed, without expensive preprocessing.

Keywords: GPU-Rendering, terrain rendering, projective grid, level of detail

1 INTRODUCTION
The interactive visualisation of digital terrain datasets is

a complex and challenging problem. Usually highly ac-

curate terrain datasets contain billions of elevation and

colour values, a data volume that cannot be displayed in

real-time. View-dependent approximation of the terrain

is needed to achieve interactive rendering.

In general, interactive terrain rendering has to address

three interrelated issues:

• quality of the final image,

• restrictions regarding available resources, and

• the real-time capability of the algorithm.

The approximation of terrain data with respect to

these criteria and for a given application context is a

current research challenge. The problem can be charac-

terised as follows: Usually we seek high quality. This

can be accomplished either by spending more time on

rendering or by storing pre-calculated results. On the

other hand, we have to keep an eye on the resources

used. Using fewer resources either leads to lower qual-

ity or might require to forego the real-time capability.

Hence, changes with respect to one criterion necessar-

ily affect the other criteria. The challenge is to find a

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee provided

that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the

first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

good compromise between quality, used resources, and

rendering time.

There has been extensive research on terrain visuali-

sation. Today’s algorithms can be categorised based on

their utilisation of graphics hardware into CPU-based
and GPU-based algorithms. CPU-based approaches fo-

cus on high quality and as such spend much time on

complex calculations on the CPU. To achieve real-time

capability they use pre-computed data structures that

consume additional resources. However, the commu-

nication between CPU and GPU is often a transporta-

tion bottleneck that usually leads to lower frame rates.

Moreover and inversely, most CPU-based terrain ren-

dering algorithms use advanced error metrics, which di-

rectly affects rendering quality and time.

GPU-based algorithms, on the other hand, focus on

real-time rendering by exploiting the parallel architec-

ture of the graphics hardware. The idea is to perform

many rather simple operations instead of a few com-

plex ones to achieve high performance. This is possible

through programmable vertex- and fragment processors

of current graphics hardware. Even though GPU-based

algorithms do not take the topology of the terrain into

account, they can produce high-quality images due to

the high primitive throughput. However, GPU-based

algorithms usually cannot guarantee an approximation

within a freely adjustable error rate.

All these terrain rendering approaches are powerful

and well-designed. But some problems still exist in par-

ticular scenarios. For instance, CPU-based algorithms

are not suited for resource-limited environments or for

applications where the terrain is subject to modifica-

tion during runtime. Vice versa, GPU-based algorithms

are not the best choice in cases where a representation

within a given error threshold is required.

WSCG 2009 Communication Papers 47 ISBN 978-80-86943-94-7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295558417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Our approach focuses on a compromise between the

competing needs for high quality, low resource con-

sumption, and real-time capability. We have developed

an algorithm that avoids expensive pre-processing, en-

sures real-time rendering, and achieves high quality

within a guaranteed error threshold. This is particularly

useful in aerospace systems, where resources are lim-

ited and a high quality visualisation is strictly required.

Other applications like games can also benefit from our

approach if they make use of dynamic terrain.

As the basis for our approach we use the projec-
tive grid method [13]. Johanson employs this method

for real-time rendering of water surfaces that are mod-

elled as dynamic height fields. The algorithm is eas-

ily portable to the GPU and suitable for very large

terrain datasets using cliptextures [20]. Even though

the algorithm can be applied for direct high-quality

view-dependent rendering of height fields in real-time

without any pre-processing, some problems can be ob-

served. For instance, while navigating a height field,

visual artifacts are recognisable. These are due to inad-

equate sampling and filtering of the height field. They

are also caused by not taking the height field’s topology

into account.

In our approach, we reduce these visual artifacts

to achieve high quality while maintaining real-time

capabilities. Furthermore, we guarantee the terrain

representation’s quality within a given error threshold.

To achieve real-time rendering, we employ a view-

dependent sampling of the height field that results in a

view-dependent level of detail (LOD) representation

of the terrain. We use a GPU-tailored grid resolution

for the sampling to fully exploit the power of the

GPU. This leads to higher quality during rendering.

Additionally, we generate an error map that gives us

error boundaries for each elevation sample. In turn, the

error map is used to control an adaptive ray casting that

is applied to those regions of the image whose errors

exceed a desired threshold. This way, the rendering

quality can be guaranteed to be always better or equal

to the given error threshold.

In the remainder of the paper we explain in detail how

we achieve this good compromise between rendering

quality, used resources and real-time capability. In the

next section, we discuss approaches related to our work.

In Section 3, we introduce the projective-grid method

and discuss its major problems when applied to terrain

rendering. Based on this discussion, we present and

evaluate our own approach in Section 4. Section 5 is

dedicated to the discussion of results.

2 RELATED WORK
Terrain rendering algorithms can be categorised into

CPU-based and GPU-based approaches.

CPU-based approaches construct, manage and select

a proper approximation of the terrain data set using the

CPU and the RAM. This allows utilising complex data

structures and operations to construct terrain geome-

try. The composed geometry is then sent to the graph-

ics hardware for rendering, which is often a bottleneck.

The geometry of digital terrain data sets is usually de-

scribed by triangles, which are directly supported by

graphics hardware. Assembling a triangle mesh with

regard to a sufficient triangle count leads to a good ap-

proximation of the terrain, provided that a proper tri-

angulation algorithm is used. However, such meshes

must be reassembled each frame to get a suitable view-

dependent refinement of the original terrain data set.

For example, [7, 24] apply a delaunay triangulation to

limit the triangle count. This is also useful to improve

the refinement and simplification of the terrain mesh

and to reduce temporal aliasing. Whereas some ap-

proaches like [11, 12] do not constrain the triangula-

tion process, other do so to generate and display hierar-

chies with multiple levels of detail. Many approaches

use a regular network or quad-tree decompositions re-

sulting in specialised and limited level-of-detail hier-

archies. [17, 10] use binary trees to efficiently traverse

and store the triangle hierarchy. Quad-tree triangulation

is preferred by [2, 22]. The subdivision scheme from

[19] subdivides the longest edge of a triangle to refine

the terrain mesh. All these approaches extract a mesh

on each frame, which restricts geometry caching and

makes it difficult to utilise specialised techniques for

efficient rendering. To solve this problem, [16, 22, 23]

aggregate triangles to patches of different resolutions.

At rendering time, patches of suitable resolutions are

chosen to be combined and sent to the GPU. Hence,

using patches accelerates the communication between

CPU and GPU, but does not solve this problem entirely.

Algorithms like [3, 4, 5, 26] store the patches in the

graphics hardware’s video memory. This significantly

reduces data transmissions between CPU and GPU and

hence increases rendering speed.

GPU-based approaches delegate the geometry pro-

cessing to the GPU. These algorithms perform many

simple operations rather than a few complex ones to

achieve high performance through the parallel archi-

tecture of the GPU. In [1, 6, 9, 15, 14, 21] approaches

are presented that can be implemented on today’s pro-

grammable GPUs. A progressive geometry transmis-

sion is applied in [26] to reduce CPU to GPU com-

munication. Warping and resampling of the underly-

ing grid according to the viewpoint is done in [8]. This

approach also adds procedural detail after resampling.

Most GPU-based approaches use static levels of detail:

the stitching of different resolutions is a common prob-

lem.

Another alternative for height field visualisation is

the projective grid method. The method was first in-

troduced by Johanson in [13] and was later applied

to dynamic height field visualisation. Livny applied

WSCG 2009 Communication Papers 48 ISBN 978-80-86943-94-7



(a) place grid (b) project grid

(c) displace grid

points

(d) use grid for ren-

dering

Figure 1: Steps of the projective grid method

the approach to terrain rendering and combined it with

clipmaps (see [27]) to support very large terrain datasets

[20]. Instead of handling the geometry on the CPU, the

grid is cached on the GPU and the programmable hard-

ware is used to project and render the grid. This re-

duces CPU to GPU communication to a minimum. In

[25], Schneider et al. use the projective grid method to

display theoretically infinite terrain in high detail. In-

stead of precalculating height fields, they are generated

at runtime.

Whereas Schneider et al.’s approach can not be used

for predefined height fields, Livny does not guarantee

rendering quality within a given error threshold.

We extend the projective grid method of Johanson in

such a way that it is applicable to arbitrarily predefined

or dynamic height fields. Furthermore we also ensure

rendering quality within a given error threshold.

3 PROJECTIVE GRID METHOD
In this section we give a brief overview of the idea be-

hind the projective grid method and describe the prob-

lems to be solved for its application to terrain rendering.

Basic idea
The projective grid method has been developed for in-

teractive water rendering based on a dynamic height

field. The principle of this method is simple and power-

ful. The basic idea is to cover the currently visible area

of a height field and just this area, with a grid of fixed

size which is placed onto the view plane. The size of the

grid determines the quality of the terrain approximation

and can be adjusted with respect to the capabilities of

the used graphics hardware. The grid is projected onto

the terrain’s ground plane. Each projected point of the

grid is displaced in the direction of the ground plane’s

normal by a fetched height value. The resulting grid is

a view-dependent approximation of the original height

field and can be used for rendering (see Figure 1).

(a) (b)

(c)

a) backfiring projection when looking above the horizon
b) intersection of terrain data peaks with view frustum
c) undersampled terrain and resulting grid
Figure 2: Visual artifacts caused by the projective grid method

Figure 3: Projection camera with increased field of view to

solve backfiring and intersected terrain

Problem discussion
Even though the grid projection seems straight forward,

there are three special cases which it needs to be ad-

justed in (see [13]):

• Looking above the scene’s horizon results in Back-
firing, which means that grid points will be projected

behind the scene camera (see Figure 2(a)).

• In case of terrain data with high amplitude, peaks

outside of the projected ground plane may intersect

the view frustum (see Figure 2(b)).

• Undersampling can lead to a loss of relevant fea-
tures, e.g., peaks and dips in the terrain. (see Fig-

ure 2(c)).

To solve the first two problems Johanson introduced

the concept of an additional projection camera. This

camera is aligned with respect to the viewing camera,

but it never looks above the horizon. Moreover, to con-

sider terrain that possibly extends into the view frus-

tum, the projection camera’s field of view is increased

(see Figure 3). The problem of losing relevant features

is not addressed by Johanson, because it can be ignored

when rendering water surfaces. However, when apply-

ing the projective grid method for terrain rendering this

problem has to be solved.

WSCG 2009 Communication Papers 49 ISBN 978-80-86943-94-7



Figure 4: a non-uniformly shaped projection area leads to in-

adequate filter values due to the choice of the enclosing sam-

pling radius.

For this purpose, filtering of the height field has to be

carried out. In [20], different resolutions of the height

field are generated and the proper resolution depending

on the sampling radius of a projected grid point is used.

A drawback of this approach is that in situations where

the view direction is close to the horizon, the projec-

tion of a single point in screen space onto the height

field leads to a trapezoid area strongly elongated in the

view direction, but narrow in the transverse direction

(see figure 4). Because of the enclosing sampling radius

used to determine the LOD, a filtered elevation value is

chosen that does not approximate the underlying height

field in a proper manner.

Undersampling as well as inaccurate filtering of the

height values lead to a loss of relevant features, depend-

ing on the current view parameters and the resolution of

the grid.

4 OUR METHOD
In this section we present our algorithm for interac-

tive terrain rendering that addresses the problems de-

scribed in the previous section. The general procedure

can be described as follows: First, we generate a sam-

ple grid whose resolution depends on the capabilities

of the graphics hardware. Thereby, we can guarantee

the highest quality that is possible with respect to a

given output device. Like in [20], we cache the grid

in video memory, thus projection and rendering can be

performed on the programmable graphics hardware. In

contrast to previous approaches, we define the grid on

the view plane depending on the current view in such a

way that the projection of grid points results in a better

approximation of the original terrain surface. This alle-

viates undersampling problems and helps achieve bet-

ter image quality with respect to a given grid resolu-

tion. The projection is performed in a straight-forward

manner. But contrary to known approaches, we com-

pute an approximation error for each grid point using

an extended MipMap hierarchy for the height field. The

error values are used to generate an error buffer. Dur-

ing rendering the buffer is deployed for an adaptive per-

Figure 5: Scheme of our method’s rendering process.

pixel displacement mapping in regions where the error

threshold is exceeded. This guarantees a representation

within a given error threshold. A scheme of the render-

ing process is shown in figure 5. In the following, we

will discuss the individual steps in more detail.

Grid Definition
The grid definition is a crucial step of the projective

grid method. An accurate approximation of the origi-

nal terrain surface implies a proper grid point distribu-

tion on the view plane. Earlier approaches used a fixed,

pre-defined grid point distribution, leading to visual ar-

tifacts in particular situations (see Section 3).

These artifacts occur due to the fact that the projected

grid points do not correspond to the original grid points

of the terrain data. To alleviate this problem, we use

a non-uniform, view-dependent grid point distribution.

The grid points are defined in the view plane in such

a way that the projection of the grid leads to almost

quadratic grid cells. Thus, stretched grid cells caused

by specific viewing conditions are avoided. This im-

plicates that the region of influence of a projected grid

point is also almost quadratic. As a result, artifacts

caused by inadequate filtering are reduced. However,

finding a good distribution is not a trivial task, because

we need knowledge about the projection and perspec-

tive distortion. To define such a view-dependent grid

point distribution in the view plane, a two step method

is carried out:

First, a uniform grid is defined in the view plane and

is projected onto the terrain’s ground plane. The aspect

ratio of each grid cell is calculated. This gives us a mea-

sure for the distortion of the grid cells. The aspect ratio

is a sufficient measure, because it depends on the grid

resolution as well as on the current view parameters. In

the second step we use this measure to distort the uni-

formly distributed grid in the view plane, resulting in a

non-uniformly distributed grid.

Whereas the first step is straight-forward, the sec-

ond step can be implemented with the help of the

importance-driven warping technique introduced in

[8]. The warping function distorts the grid in such

a way that more grid points are placed in regions

WSCG 2009 Communication Papers 50 ISBN 978-80-86943-94-7



with high importance, while grid points are removed

in other regions. This is exactly the behaviour that

accomplishes our problem.

The required importance map is computed based on

the aspect ratio of the projected grid cells. Regions with

aspect ratios less than one are considered as very im-

portant, whereas regions with aspect ratios greater than

one are declared as less important. This prompts the

warping technique to relocate grid points from regions

marked as unimportant to those declared as important.

Hence, this results in the desired non-uniformly dis-

tributed grid.

This calculation is expensive and must be carried out

on the CPU (see [8]) and therefore cannot be applied to

the entire high-resolution grid. To reduce the calcula-

tion overhead, we use a coarse grid defined in the view

plane. After applying the warping algorithm, we use the

programmable GPU to refine the grid as far as possible

with respect to the power of the graphics hardware.

Our procedure does not result in an optimal grid point

distribution, but nonetheless, it leads to much better re-

sults than fixed, view-independent grid point distribu-

tions. Thereby, we are able to reduce visual artifacts

and to achieve a better quality (see section 5).

Projection
After defining the non-uniform grid in the view plane,

the grid points are projected using the algorithm intro-

duced by Johanson. However, to reduce aliasing arti-

facts and to avoid a loss of relevant features, we calcu-

late the height values of grid points with regard to their

regions of influence on the ground plane.

To calculate proper height values, we filter the height

field. We construct a multi-level texture pyramid of the

height field, similar to [20], as follows: Starting from

the original (finest) level, each level is constructed from

the previous one by applying an average filter followed

by halving its size in each dimension. The algorithm

determines the level in the pyramid which a value is se-

lected from depending on the region of influence. Simi-

lar to previous approaches, we calculate the farthest dis-

tance dist between adjacent projected grid points and

use this distance to calculate the level in the texture

pyramid as follows:

level = max(0, log2 dist) (1)

In contrast to other approaches, our grid definition

guarantees an almost uniform distance between adja-

cent neighbours of a grid point on the ground plane.

This leads to more accurately filtered height values.

The result is a better approximation of the original ter-

rain surface (see Figure 6) with respect to the grid res-

olution.

Even though the projected grid could now be ren-

dered using a simple texture mapping into the colour

Figure 6: The left image shows the result of a uniform grid

while the right image is generated using the view-dependent

grid point distribution.

buffer, further enhancements are necessary to guaran-

tee a high quality representation within a given error

threshold.

Error Metric
In our approach we want to guarantee a representation

within a given error threshold. For that purpose, we use

the following two error types:

• screen-space error

• object-space error

During the projection phase, the object-space error

δi, j for each grid point pi, j is calculated. The object-

space error depends on the chosen filtered height value

havg as well as on the local minima hmin and maxima

hmax in the region of influence of pi, j. It is calculated as

follows:

δi, j = max(hmax−havg,havg−hmin) (2)

To gather local minima and maxima we generate a

min and max filtered texture pyramid similar to the pre-

viously generated average texture pyramid. In this way,

average, min, and max height values can be fetched in

unified manner from the texture pyramids. The fetching

can be carried out in the projection step and the object-

space error can be calculated using Equation 2. The

object-space error is then projected back to the view

plane, resulting in a screen-space error ρi, j. Since this

can be computationally inefficient (see [18]), we use a

simple metric:

ρi, j = λ
δi, j

‖pi, j− e‖ (3)

with λ = w
φ , where w is the number of pixels in the

field of view φ and e the view position (see [18]).

The screen-space error ρi, j can now be compared

to the user-defined screen-space error threshold γ. If

ρi, j > γ we displace the grid point pi, j by hmax to pre-

serve local maxima. Furthermore, the error is stored for

each projected grid point pi, j and is used in the render-

ing pass to guarantee a representation within the error

WSCG 2009 Communication Papers 51 ISBN 978-80-86943-94-7



Figure 7: The error buffer for a 256x512 grid resolution. Red

means high error, while black represents errors within the

user-defined threshold. The left image shows the error buffer

for a uniform grid point distribution. The right image was

generated using the non uniform grid point distribution. Note

the high detail and the minimised error in far-away regions.

threshold γ. For that purpose, we normalise the error

values to the range [0,1] as follows:

pi, j.error =

{
0 ρi, j < γ
1.0− γ

ρi, j
else

(4)

Finally, the grid is rendered with the error value as

colour attribute, resulting in an error buffer (see Figure

7) containing an interpolated error value for each visible

pixel.

Rendering
During rendering our goal is to keep the per-pixel error

below a given error threshold. Previous GPU-based ap-

proaches generated high quality images only by render-

ing huge numbers of primitives. But this does not guar-

antee any error rates. Therefore, we follow a different

strategy. We perform adaptive ray casting in selected

regions with errors that exceed the user-defined thresh-

old. Hence, we are able to guarantee a chosen quality.

The adaptive approach reduces calculation costs com-

pared to applying ray casting to the entire height field.

Ray casting is performed on the GPU as follows: For

each pixel in screen space, the error is retrieved from

the error buffer generated in the previous step (see Sec-

tion 4). Ray casting calculates exact colour and precise

depth values for a pixel in screen-space and replaces

the less accurate ones in the colour and depth buffer

(see Section 4). The final image can then be rendered

using a deferred shading approach. We prefer deferred

shading because it decouples shading from ray casting.

Without deferred shading, to perform ray casting, we

would require knowledge about the shading algorithm.

5 DISCUSSION AND RESULTS
Our approach can be summarised as follows:

Figure 8: Ray casting of the terrain on selected areas. The

left image shows terrain rendering without ray casting. On

the right image ray casting is turned on.

The grid definition: defines a view-dependent, non-

uniform grid on the view plane, which is novel

compared to previous approaches. A uniform grid

is warped with the help of an importance-driven

method. The importance is defined by the aspect

ratio of projected grid cells. This results in a non-

uniform grid point distribution. Due to the view-

dependent grid definition, we achieve a better ap-

proximation of the original terrain surface with re-

spect to the grid resolution.

The projection: projects the non-uniform grid onto

the ground plane and fetches proper height values

for each projected grid point. The grid definition

guarantees that the projected grid cells are almost

quadratic, which leads to more accurately filtered

height values. To avoid undersampling, the projec-

tion uses an average MipMap representation of the

height field to fetch proper height values for each

grid point.

The error measure: is used to gather approximation

errors during the projection of grid points. In this

step, a min and max MipMap representation of the

height field is utilised. Based on the MipMaps, an

object-space error is calculated for each grid point.

The object-space error is projected back onto the

view plane defining the screen-space error. The error

is compared to a user-defined threshold and is nor-

malised. An error buffer is rendered containing the

interpolated normalised errors for each visible pixel.

The rendering process: performs adaptive ray casting

utilising the error buffer in regions with high errors.

The ray casting approach guarantees a representa-

tion within the user-defined error threshold.

The MipMaps reduce calculation time during the dif-

ferent steps. They can be generated in an offline pro-

cess, but it is also possible to execute this during run-

time, because the calculations are very simple and fast.

Ray casting allows for a representation with a per-pixel

error below a given error threshold. In fact, this can not

WSCG 2009 Communication Papers 52 ISBN 978-80-86943-94-7



fps error

grid size uniform non-

uniform

ray cast-

ing (uni-

form)

ray cast-

ing (non-

uniform)

uniform non-

uniform

1024x512 68.72 61.48 33.43 36.42 0.20 0.03

512x256 251.34 217.82 64.26 70.17 0.21 0.06

600x600 98.14 90.69 41.05 43.64 0.20 0.05

300x900 131.47 119.53 43.27 45.81 0.19 0.04

400x1900 48.61 45.80 23.52 25.34 0.18 0.02

fps: average frames per second for 8000 frames
error: average normalised error per grid point

Table 1: Speed and quality comparison between the

standard method from [20] and our technique using dif-

ferent grid resolutions.

guarantee a fixed frame rate, as the original approach,

but it is a good compromise between quality, time and

resources. Indeed, the generation of the MipMaps con-

sumes resources, but on the other hand, it enables us

to guarantee a representation’s quality. High quality is

guaranteed by performing adaptive ray casting on se-

lected areas, which, however, consumes time. But we

keep ray casting to a minimum, by using an improved

non-uniform grid point distribution on the view plane.

This distribution is computed by a CPU-based warping

technique, which again consumes time. However, ex-

cept for the warping technique, all other calculations

are performed on the GPU, which guarantees real-time

and high quality terrain visualisation.

Our approach has been implemented using OpenGL

2.0 and requires graphics hardware supporting shader

model 3.0 or higher. We use the vertex shader to define

the grid on the view plane as well as for the projection

and displacement of the grid points. The programmable

fragment pipeline enables ray casting on the GPU. For

the purpose of evaluation, we use the real-world 4k

Puget Sound data set provided by Lindstrom with the

original scaling factors having a peek at mount Rainier

with ca. 4.400 metres.

It is also possible to support very large terrain using

clipmaps as presented in [20]. Since Livny’s and our

approach use the same projection procedure, only a few

modifications would be necessary.

The results we report in this section have been

achieved on a PC with a Core 2 Duo 2.0 GHz pro-

cessor, 1GB of memory and a GeForce 8800 GTX

graphics card. Table 1 shows average frame rates (fps)

as well as the average screen-space error per grid point,

during a flight over Puget Sound with and without ray

casting turned on (see figure 9). We tested various

grid resolutions using the standard method and our

technique, with a fixed screen size of 1024 x 800. The

uniformly distributed grid rendering corresponds to

Livny’s approach (see [20]).

As Table 1 shows, the usage of a non-uniform projec-

tion grid leads to a better approximation of the underly-

ing terrain and reduces the average screen-space error

per grid drastically. For instance, using a low grid res-

(a) (b)

(c)

a) the start of the flight
b) near ground in the middle of the flight
c) close up at the end of the flight
Figure 9: The flight over Puget Sound. We tested various

camera perspectives, from flight near ground till closeups.

error pixels avg error max error

grid-size uniform non-

uniform

uniform non-

uniform

uniform non-

uniform

1024x512 10.7 7.5 1.60 1.42 18.0 6.77

512x256 15.6 12.1 1.70 1.40 23.1 6.9

600x600 11.9 8.5 1.83 1.53 22.0 8.3

300x900 13.0 9.0 1.68 1.44 19.3 6.7

400x1900 11.0 7.4 1.67 1.51 14.9 6.7

error pixels: the number of error pixels in % of all visible
pixels
avg error: average screen-space error of all visible pixels
max error: max screen-space error of a all visible pixels

Table 2: Statistics on the errors of visible pixels. Our

method minimises the regions, which ray casting must

be performed in. Thus, we reduce the calculation

time to achieve a representation within a defined error

threshold. For performance issue see Table 1.

olution like 512x256 and a non-uniform projection grid

generates an average error of 0.06 where a uniform grid

with a four times higher resolution with 1024x512 still

generates an average error of 0.20.

Comparing the frame rates of the standard method

with our approach the time needed for warping is recog-

nisable when using low grid resolution. The higher

the grid resolution is, the more the frame rates con-

verge. Looking at the grid resolution 400x1900, the

frame rate difference between the standard method and

ours is very small and can be neglected.

Table 2 displays the percentage of error pixels in re-

lation to the screen resolution (corresponding perfor-

mance measurements are shown in Table 1. These re-

gions must be handled by ray casting to guarantee ren-

dering quality within the error threshold. Furthermore,

the average error of all visible pixels as well as the max-

imum screen-space error have been captured. Compar-

ing the maximum screen-space error of both techniques

WSCG 2009 Communication Papers 53 ISBN 978-80-86943-94-7



shows that our technique approximates the original sur-

face much better. Moreover, our method also minimises

the regions with high errors. Hence, a lower resolution

can be chosen, which still results in nearly the same

number of error pixels, in contrast to the original ap-

proach. For instance, a 600x600 grid resolution gener-

ates fewer error regions with our technique than a grid

resolution of 400x1900 with the classic approach. The

results of Table 1 and Table 2 show that a compromise

between time, resources and quality has been achieved.

6 CONCLUSION
We have introduced a GPU-supported approach for ter-

rain rendering, using the projective grid method. We

have shown how to reduce visual artifacts caused by

inaccurate filtering of height values. Furthermore, we

gather approximation errors that help us determine re-

gions that need to be rendered using adaptive ray cast-

ing. Ray casting guarantees a representation within a

given error threshold. We see the scope of future work

in improving the view-dependent definition of the grid

distribution in the view plane. Moreover, ray casting

should replaced by a GPU-based subdivision algorithm

utilising the shader model 4.0. This algorithm can be

controlled by the error metric, and can be processed

during the projection step. This will also increase the

performance.

REFERENCES
[1] A. Asirvatham and H. Hoppe. GPU Gems 2: Program-

ming Techniques for High-Performance Graphics and General-
Purpose Computation. Addison-Wesley Professional, 2005.

[2] X. Bao, R. Pajarola, and M. Shafae. Smart: An efficient tech-

nique for massive terrain visualization from out-of-core. In

VMV, 2004.

[3] A. Brodersen. Real-time visualization of large textured terrains.

In Stephen N. Spencer, editor, GRAPHITE, Proc. of the 3rd In-
ternational Conference on Computer Graphics and Interactive
Techniques in Australasia and Southeast Asia 2005, Dunedin,
New Zealand, November 29 - December 2, 2005, pages 439–

442. ACM, 2005.

[4] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio,

and R. Scopigno. BDAM – batched dynamic adaptive meshes

for high performance terrain visualization. Computer Graphics
Forum, 22(3):505–514, September 2003. Proc. Eurographics

2003.

[5] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and

R. Scopigno. Planet-sized batched dynamic adaptive meshes

(p-bdam). In IEEE Visualization, pages 147–154, 2003.

[6] M. Clasen and H.-C. Hege. Terrain rendering using spherical

clipmaps. In Beatriz Sousa Santos, Thomas Ertl, and Ken Joy,

editors, EUROVIS - Eurographics /IEEE VGTC Symposium on
Visualization, pages 91–98, Lisbon, Portugal, 2006. Eurograph-

ics Association.

[7] D. Cohen-Or and Y. Levanoni. Temporal continuity of levels

of detail in delaunay triangulated terrain. In VIS ’96: Proc.
of the 7th conference on Visualization ’96, pages 37–42, Los

Alamitos, CA, USA, 1996. IEEE Computer Society Press.

[8] C. Dachsbacher and M. Stamminger. Rendering procedural

terrain by geometry image warping. In Rendering Techniques
2004 (Proc. of Eurographics Symposium on Rendering), pages

103–110, 2004.

[9] W. de Boer. Fast terrain rendering using geometrical mipmap-

ping. %urlhttp://www.flipcode.com/tutorials/geomipmaps.pdf,

October 31 2000.

[10] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller,

C. Aldrich, and M. B. Mineev-Weinstein. ROAMing terrain:

Real-time optimally adapting meshes. In IEEE Visualization
’97 (VIS ’97), pages 81–88, Washington - Brussels - Tokyo,

October 1997. IEEE.

[11] J. El-Sana and A. Varshney. Generalized view-dependent sim-

plification. Computer Graphics Forum, 18:83 – 94, 1999.

[12] H. Hoppe. Smooth view-dependent level-of-detail control and

its application to terrain rendering. In VIS ’98: Proc. of the
conference on Visualization ’98, pages 35–42, Los Alamitos,

CA, USA, 1998. IEEE Computer Society Press.

[13] C. Johanson. Real-time water rendering - introducing the pro-

jected grid concept. Master’s thesis, Lund University, 2004.

[14] Y. Kryachko. GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose Computa-
tion. Addison-Wesley Professional, 2005.

[15] B. D. Larsen and N. J. Christensen. Real-time terrain render-

ing using smooth hardware optimized level of detail. Journal
of WSCG, 11(2):282–9, feb 2003. WSCG’2003: 11th Inter-

national Conference in Central Europe on Computer Graphics,

Visualization and Digital Interactive Media.

[16] J. Levenberg. Fast view-dependent level-of-detail rendering us-

ing cached geometry. In VIS ’02: Proc. of the conference on Vi-
sualization ’02, pages 259–266, Washington, DC, USA, 2002.

IEEE Computer Society.

[17] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust,

and G. A. Turner. Real-time, continuous level of detail ren-

dering of height fields. In SIGGRAPH ’96: Proc. of the 23rd
annual conference on Computer graphics and interactive tech-
niques, pages 109–118, New York, NY, USA, 1996. ACM.

[18] P. Lindstrom and V. Pascucci. Visualization of large terrains

made easy. In IEEE Visualization, August 2001.

[19] P. Lindstrom and V. Pascucci. Terrain simplification simplified:

A general framework for view-dependent out-of-core visualiza-

tion. IEEE Transactions on Visualization and Computer Graph-
ics, 8(3):239–254, 2002.

[20] Y. Livny, N. Sokolovsky, T. Grinshpoun, and J. El-Sana. A

gpu persistent grid mapping for terrain rendering. Vis. Comput.,
24(2):139–153, 2008.

[21] F. Losasso and H. Hoppe. Geometry clipmaps: terrain rendering

using nested regular grids. ACM Trans. Graph., 23(3):769–776,

2004.

[22] R. Pajarola. Large scale terrain visualization using the restricted

quadtree triangulation. In VIS ’98: Proc. of the conference on
Visualization ’98, pages 19–26, Los Alamitos, CA, USA, 1998.

IEEE Computer Society Press.

[23] A. A. Pomeranz. Roam using surface triangle clusters (rustic).

Master’s thesis, University of California at Davis, 2000.

[24] B. Rabinovich and C. Gotsman. Visualization of large terrains

in resource-limited computing environments. In VIS ’97: Proc.
of the 8th conference on Visualization ’97, pages 95–102, Los

Alamitos, CA, USA, 1997. IEEE Computer Society Press.

[25] J. Schneider, T. Boldte, and . Westermann. Real-time editing,

synthesis, and rendering of infinite landscapes on GPUs. In

Vision, Modeling and Visualization 2006, 2006.

[26] J. Schneider and R. Westermann. Gpu-friendly high-quality ter-

rain rendering. Journal of WSCG, 14(1-3):49–56, 2006.

[27] C. C. Tanner, C. J. Migdal, and M. T. Jones. The clipmap: a

virtual mipmap. In SIGGRAPH ’98: Proc. of the 25th annual
conference on Computer graphics and interactive techniques,

pages 151–158, New York, NY, USA, 1998. ACM.

WSCG 2009 Communication Papers 54 ISBN 978-80-86943-94-7


	!_WSCG2009_SHORT_final_NUMBERED.pdf
	C41-full
	C61-full


