104 research outputs found

    In situ stress database of the greater Ruhr region (Germany) derived from hydrofracturing tests and borehole logs

    Get PDF
    Between 1986 and 1995, 429 hydrofracturing tests have been carried out in six now-abandoned coal mines and two coal bed methane boreholes at depths between 600 and 1950 m within the greater Ruhr region in western Germany. From these tests, stress magnitudes and orientations of the stress tensor are derived. The majority of hydrofracturing tests were carried out from mine galleries away from mine workings in a relatively undisturbed rock mass. These data along with detailed information have been disclosed recently. In combination with already published material, we provide the first comprehensive stress database of the greater Ruhr region. Our study summarises the results of the extensive in situ stress test campaign and assigns quality to each data record using the established quality ranking schemes of the World Stress Map project. The stress magnitudes suggest predominantly strike-slip stress regime, where the magnitude of the minimum horizontal stress, Shmin, is half of the magnitude of the maximum horizontal stress, SHmax, implying that the horizontal differential stress is high. We observe no particular change in the stress gradient at depth throughout the Carboniferous layers and no significant difference between tests carried out in coal mines and deep boreholes. The mean SHmax orientation varies between 133 ± 13∘ in the westernmost located Friedrich Heinrich coal mine and 168 ± 23∘ in the easternmost located Westphalia coal mine. The mean SHmax orientation, based on 87 data records from this and already published studies, of 161 ± 43∘ is in good agreement with the regional stress orientation observed in northwestern Europe. The presented public database provides in situ stress magnitude and stress orientation data records that are essential for the calibration of geomechanical numerical models on regional and/or reservoir scales for, among others, assessing stability issues of borehole trajectories, caverns, and georeservoirs in general. For an application example of this database, we estimate slip and dilation tendencies of major geological discontinuities, discovered during the 700-year-long coal mining activities in the region. The result, although burdened by high uncertainties, shows that the discontinuities striking in the N–S and NW–SE directions have a higher slip tendency compared to the ones striking ENE–WSW and NNW–SSE, whereas a high dilation tendency is observed for discontinuities striking NNW–SSE and a low dilation tendency for the ones striking ENE–WSW. The stress orientation database is available under https://doi.org/10.24406/fordatis/200 (Kruszewski et al., 2022a), the stress magnitude database is available under https://doi.org/10.24406/fordatis/201 (Kruszewski et al., 2022b), whereas the hydrofracturing test reports are available under https://doi.org/10.24406/fordatis/222 (Kruszewski et al., 2022c).</p

    The world stress map - a freely accessible tool for geohazard assessment

    Get PDF
    Birgit MĂŒller, Oliver Heidbach, and Mark Tinga

    Stress field sensitivity analysis in a sedimentary sequence of the Alpine foreland, Northern Switzerland

    Get PDF
    The stress field at depth is a relevant parameter for the design of subsurface constructions and reservoir management. Yet the distortion of the regional stress field due to local-scale features such as sedimentary and tectonic structures or topography is often poorly constrained. We conduct a stress sensitivity analysis using 3-D numerical geomechanical modelling with an elasto-plastic material law to explore the impact of such site specific features on the stress field in a sedimentary sequence of the Swiss Alpine foreland. The model\u27s dimensions are 14 km × 14 km × 3 km and it contains ten units with different mechanical properties, intersected by two regional fault zones. An initial stress state is established involving a semi-empirical relationship between the ratio of horizontal to vertical stress and the overconsolidation ratio of argillaceous sediments. The model results indicate that local topography can affect the stress field significantly to depths greater than the relief contrasts at the surface, especially in conjunction with horizontal tectonic loading. The complexity and frictional properties of faults are also relevant. The greatest variability of the stress field arises across the different sedimentary units. Stress magnitudes and stress anisotropy are much larger in stiffer formations such as massive limestones than in softer argillaceous formations. The stiffer formations essentially carry the load of the far-field forces and are therefore more sensitive to changes of the boundary conditions. This general characteristic of stress distribution in the stiff and soft formations is broadly maintained also with progressive loading towards the plastic limit. The stress field in argillaceous sediments within a stack of formations with strongly contrasting mechanical properties like in the Alpine foreland appears to be relatively insensitive to changes in the tectonic boundary conditions and is largely controlled by the maximum stiffness contrast with respect to the load-bearing formations

    Hilltop Curvature Increases With the Square Root of Erosion Rate

    Get PDF
    This is the pre-peer reviewed version of the following article: Gabet, E. J., Mudd, S. M., Wood, R. W., Grieve, S. W. D., Binnie, S. A., & Dunai, T. J. (2021). Hilltop curvature increases with the square root of erosion rate. Journal of Geophysical Research: Earth Surface, 126, e2020JF005858. https://doi.org/10.1029/2020JF005858, which has been published in final form at https://doi.org/10.1029/2020JF005858. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions

    Stress Field Interactions Between Overlapping Shield Volcanoes : Borehole Breakout Evidence From the Island of Hawai'i, USA

    Get PDF
    Acknowledgments: This PTA2 borehole investigation was funded by the International Continental Scientific Drilling Program (ICDP) and by VMAPP (Volcanic Margin Petroleum Prospectivity) project (VBPR/DougalEARTH/TGS) in collaboration with the Humu'ula Groundwater Research Project. D. A. J. and S. P. are partly funded through a Norwegian Research Council Centres of Excellence project (project number 223272, CEED). We thank Marco Groh for the logging operations. We thank two anonymous reviewers for the comments and suggestions. We are particularly grateful to the Associate Editor Mike Poland for his valuable comments and his critical review that greatly improved the manuscript.Peer reviewedPublisher PD

    Coupled, Physics-Based Modeling Reveals Earthquake Displacements are Critical to the 2018 Palu, Sulawesi Tsunami

    Get PDF
    The September 2018, Mw 7.5 Sulawesi earthquake occurring on the Palu-Koro strike-slip fault system was followed by an unexpected localized tsunami. We show that direct earthquake-induced uplift and subsidence could have sourced the observed tsunami within Palu Bay. To this end, we use a physics-based, coupled earthquake–tsunami modeling framework tightly constrained by observations. The model combines rupture dynamics, seismic wave propagation, tsunami propagation and inundation. The earthquake scenario, featuring sustained supershear rupture propagation, matches key observed earthquake characteristics, including the moment magnitude, rupture duration, fault plane solution, teleseismic waveforms and inferred horizontal ground displacements. The remote stress regime reflecting regional transtension applied in the model produces a combination of up to 6 m left-lateral slip and up to 2 m normal slip on the straight fault segment dipping 65∘ East beneath Palu Bay. The time-dependent, 3D seafloor displacements are translated into bathymetry perturbations with a mean vertical offset of 1.5 m across the submarine fault segment. This sources a tsunami with wave amplitudes and periods that match those measured at the Pantoloan wave gauge and inundation that reproduces observations from field surveys. We conclude that a source related to earthquake displacements is probable and that landsliding may not have been the primary source of the tsunami. These results have important implications for submarine strike-slip fault systems worldwide. Physics-based modeling offers rapid response specifically in tectonic settings that are currently underrepresented in operational tsunami hazard assessment
    • 

    corecore