109 research outputs found
In situ stress database of the greater Ruhr region (Germany) derived from hydrofracturing tests and borehole logs
Between 1986 and 1995, 429 hydrofracturing tests have been carried out in six now-abandoned coal mines and two coal bed methane boreholes at depths between 600 and 1950âm within the greater Ruhr region in western Germany. From these tests, stress magnitudes and orientations of the stress tensor are derived. The majority of hydrofracturing tests were carried out from mine galleries away from mine workings in a relatively undisturbed rock mass. These data along with detailed information have been disclosed recently. In combination with already published material, we provide the first comprehensive stress database of the greater Ruhr region. Our study summarises the results of the extensive in situ stress test campaign and assigns quality to each data record using the established quality ranking schemes of the World Stress Map project. The stress magnitudes suggest predominantly strike-slip stress regime, where the magnitude of the minimum horizontal stress, Shmin, is half of the magnitude of the maximum horizontal stress, SHmax, implying that the horizontal differential stress is high. We observe no particular change in the stress gradient at depth throughout the Carboniferous layers and no significant difference between tests carried out in coal mines and deep boreholes. The mean SHmax orientation varies between 133â±â13â in the westernmost located Friedrich Heinrich coal mine and 168â±â23â in the easternmost located Westphalia coal mine. The mean SHmax orientation, based on 87 data records from this and already published studies, of 161â±â43â is in good agreement with the regional stress orientation observed in northwestern Europe. The presented public database provides in situ stress magnitude and stress orientation data records that are essential for the calibration of geomechanical numerical models on regional and/or reservoir scales for, among others, assessing stability issues of borehole trajectories, caverns, and georeservoirs in general. For an application example of this database, we estimate slip and dilation tendencies of major geological discontinuities, discovered during the 700-year-long coal mining activities in the region. The result, although burdened by high uncertainties, shows that the discontinuities striking in the NâS and NWâSE directions have a higher slip tendency compared to the ones striking ENEâWSW and NNWâSSE, whereas a high dilation tendency is observed for discontinuities striking NNWâSSE and a low dilation tendency for the ones striking ENEâWSW. The stress orientation database is available under https://doi.org/10.24406/fordatis/200 (Kruszewski et al., 2022a), the stress magnitude database is available under https://doi.org/10.24406/fordatis/201 (Kruszewski et al., 2022b), whereas the hydrofracturing test reports are available under https://doi.org/10.24406/fordatis/222 (Kruszewski et al., 2022c).</p
The world stress map - a freely accessible tool for geohazard assessment
Birgit MĂŒller, Oliver Heidbach, and Mark Tinga
Impact of faults on the remote stress state
The impact of faults on the contemporary stress field in the upper crust has been discussed in various studies. Data and models clearly show that there is an effect, but so far, a systematic study quantifying the impact as a function of distance from the fault is lacking. In the absence of data, here we use a series of generic 3-D models to investigate which component of the stress tensor is affected at which distance from the fault. Our study concentrates on the far field, located hundreds of metres from the fault zone. The models assess various techniques to represent faults, different material properties, different boundary conditions, variable orientation, and the fault's size. The study findings indicate that most of the factors tested do not have an influence on either the stress tensor orientation or principal stress magnitudes in the far field beyond 1000 m from the fault. Only in the case of oblique faults with a low static friction coefficient of Ό=0.1 can noteworthy stress perturbations be seen up to 2000 m from the fault. However, the changes that we detected are generally small and of the order of lateral stress variability due to rock property variability. Furthermore, only in the first hundreds of metres to the fault are variations large enough to be theoretically detected by borehole-based stress data when considering their inherent uncertainties. This finding agrees with robust stress magnitude measurements and stress orientation data. Thus, in areas where high-quality and high-resolution data show gradual and continuous stress tensor rotations of >20° observed over lateral spatial scales of 10 km or more, we infer that these rotations cannot be attributed to faults. We hypothesize that most stress orientation changes attributed to faults may originate from different sources such as density and strength contrasts
Stress field sensitivity analysis in a sedimentary sequence of the Alpine foreland, Northern Switzerland
The stress field at depth is a relevant parameter for the design of subsurface constructions and reservoir management. Yet the distortion of the regional stress field due to local-scale features such as sedimentary and tectonic structures or topography is often poorly constrained. We conduct a stress sensitivity analysis using 3-D numerical geomechanical modelling with an elasto-plastic material law to explore the impact of such site specific features on the stress field in a sedimentary sequence of the Swiss Alpine foreland. The model\u27s dimensions are 14 km Ă 14 km Ă 3 km and it contains ten units with different mechanical properties, intersected by two regional fault zones. An initial stress state is established involving a semi-empirical relationship between the ratio of horizontal to vertical stress and the overconsolidation ratio of argillaceous sediments. The model results indicate that local topography can affect the stress field significantly to depths greater than the relief contrasts at the surface, especially in conjunction with horizontal tectonic loading. The complexity and frictional properties of faults are also relevant. The greatest variability of the stress field arises across the different sedimentary units. Stress magnitudes and stress anisotropy are much larger in stiffer formations such as massive limestones than in softer argillaceous formations. The stiffer formations essentially carry the load of the far-field forces and are therefore more sensitive to changes of the boundary conditions. This general characteristic of stress distribution in the stiff and soft formations is broadly maintained also with progressive loading towards the plastic limit. The stress field in argillaceous sediments within a stack of formations with strongly contrasting mechanical properties like in the Alpine foreland appears to be relatively insensitive to changes in the tectonic boundary conditions and is largely controlled by the maximum stiffness contrast with respect to the load-bearing formations
Hilltop Curvature Increases With the Square Root of Erosion Rate
This is the pre-peer reviewed version of the following article: Gabet, E. J., Mudd, S. M., Wood, R. W., Grieve, S. W. D., Binnie, S. A., & Dunai, T. J. (2021). Hilltop curvature increases with the square root of erosion rate. Journal of Geophysical Research: Earth Surface, 126, e2020JF005858. https://doi.org/10.1029/2020JF005858, which has been published in final form at https://doi.org/10.1029/2020JF005858. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions
Stress state at faults: the influence of rock stiffness contrast, stress orientation, and ratio
The contemporary crustal stress state is primarily driven by gravitational volume forces and plate tectonics. However, there are various smaller-scale sources such as geological structures and stiffness contrast that perturb stresses and deviate them from the regional pattern. For example, borehole stress analysis in numerous cases has revealed abrupt rotations of horizontal stress orientation of up to 90° when faults are crossed. Herein, we investigate the rotation of principal stress axes at a fault by means of a 2D generic numerical model. We focus on the near field of the fault and the damage zone with a fault parameterized as a rock stiffness contrast. A substantial influence of the far-field stress field in terms of the differential stress and in terms of the stress ratio RS=Sâ/S_3 is shown. Furthermore, the contrast in material properties is the basis for any stress rotation, and in particular the stiffness is demonstrated to have a significant influence. Eventually, the impact of the angle between the fault strike and the orientation of SHmax is demonstrated. Our results show that the stress rotation is negatively correlated with the ratio of principal far-field stresses. A small angle between the far-field stress orientation and the fault facilitates stress rotation. A high contrast in rock stiffness further increases the stress rotation angle. Faults striking perpendicular to the maximum principal stress orientation experience no rotation at all. However, faults oriented parallel to the maximum principal stress orientation experience either no rotation or a 90° rotation, dependent on the ratio of principal stresses and the rock stiffness contrast. A comparison with observations from various boreholes worldwide shows that in general the findings are in agreement, even though the dip angle proves to have an influence on the stress rotation, in particular for shallow-dipping faults
Stress Field Interactions Between Overlapping Shield Volcanoes : Borehole Breakout Evidence From the Island of Hawai'i, USA
Acknowledgments: This PTA2 borehole investigation was funded by the International Continental Scientific Drilling Program (ICDP) and by VMAPP (Volcanic Margin Petroleum Prospectivity) project (VBPR/DougalEARTH/TGS) in collaboration with the Humu'ula Groundwater Research Project. D. A. J. and S. P. are partly funded through a Norwegian Research Council Centres of Excellence project (project number 223272, CEED). We thank Marco Groh for the logging operations. We thank two anonymous reviewers for the comments and suggestions. We are particularly grateful to the Associate Editor Mike Poland for his valuable comments and his critical review that greatly improved the manuscript.Peer reviewedPublisher PD
Coupled, Physics-Based Modeling Reveals Earthquake Displacements are Critical to the 2018 Palu, Sulawesi Tsunami
The September 2018, Mw 7.5 Sulawesi earthquake occurring on the Palu-Koro strike-slip fault system was followed by an unexpected localized tsunami. We show that direct earthquake-induced uplift and subsidence could have sourced the observed tsunami within Palu Bay. To this end, we use a physics-based, coupled earthquakeâtsunami modeling framework tightly constrained by observations. The model combines rupture dynamics, seismic wave propagation, tsunami propagation and inundation. The earthquake scenario, featuring sustained supershear rupture propagation, matches key observed earthquake characteristics, including the moment magnitude, rupture duration, fault plane solution, teleseismic waveforms and inferred horizontal ground displacements. The remote stress regime reflecting regional transtension applied in the model produces a combination of up to 6 m left-lateral slip and up to 2 m normal slip on the straight fault segment dipping 65â East beneath Palu Bay. The time-dependent, 3D seafloor displacements are translated into bathymetry perturbations with a mean vertical offset of 1.5 m across the submarine fault segment. This sources a tsunami with wave amplitudes and periods that match those measured at the Pantoloan wave gauge and inundation that reproduces observations from field surveys. We conclude that a source related to earthquake displacements is probable and that landsliding may not have been the primary source of the tsunami. These results have important implications for submarine strike-slip fault systems worldwide. Physics-based modeling offers rapid response specifically in tectonic settings that are currently underrepresented in operational tsunami hazard assessment
- âŠ