1,404 research outputs found

    The Supernova Channel of Super-AGB Stars

    Full text link
    We study the late evolution of solar metallicity stars in the transition region between white dwarf formation and core collapse. This includes the super-asymptotic giant branch (super-AGB, SAGB) stars, which have massive enough cores to ignite carbon burning and form an oxygen-neon (ONe) core. The most massive SAGB stars have cores that may grow to the Chandrasekhar mass because of continued shell-burning. Their cores collapse, triggering a so called electron capture supernovae (ECSN). From stellar evolution models we find that the initial mass range for SAGB evolution is 7.5 ... 9.25\msun. We perform calculations with three different stellar evolution codes to investigate the sensitivity of this mass range to some of the uncertainties in current stellar models. The mass range significantly depends on the treatment of semiconvective mixing and convective overshooting. To consider the effect of a large number of thermal pulses, as expected in SAGB stars, we construct synthetic SAGB models that include a semi-analytical treatment of dredge-up, hot-bottom burning, and thermal pulse properties. This synthetic model enables us to compute the evolution of the main properties of SAGB stars from the onset of thermal pulses until the core reaches the Chandrasekhar mass or is uncovered by the stellar wind. Thereby, we determine the stellar initial mass ranges that produce ONe-white dwarfs and electron-capture supernovae. The latter is found to be 9.0 ... 9.25\msun for our fiducial model, implying that electron-capture supernovae would constitute about 4% of all supernovae in the local universe. Our synthetic approach allows us to explore the uncertainty of this number imposed by uncertainties in the third dredge-up efficiency and ABG mass loss rate. We find for ECSNe a upper limit of ~20% of all supernovae (abridged).Comment: 13 pages, 16 figures, submitted to ApJ, uses emulateap

    First Stars III Conference Summary

    Full text link
    The understanding of the formation, life, and death of Population III stars, as well as the impact that these objects had on later generations of structure formation, is one of the foremost issues in modern cosmological research and has been an active area of research during the past several years. We summarize the results presented at "First Stars III," a conference sponsored by Los Alamos National Laboratory, the Kavli Institute for Particle Astrophysics and Cosmology, and the Joint Institute for Nuclear Astrophysics. This conference, the third in a series, took place in July 2007 at the La Fonda Hotel in Santa Fe, New Mexico, U.S.A.Comment: 11 pages, no figures; Conference summary for First Stars III, which was held in Santa Fe, NM on July 15-20, 2007. To appear in "Proceedings of First Stars III," Eds. Brian W. O'Shea, Alexander Heger & Tom Abe

    Code dependencies of pre-supernova evolution and nucleosynthesis in massive stars: Evolution to the end of core helium burning

    Get PDF
    Massive stars are key sources of radiative, kinetic and chemical feedback in the Universe. Grids of massive star models computed by different groups each using their own codes, input physics choices and numerical approximations, however, lead to inconsistent results for the same stars. We use three of these 1D codes – genec, kepler and mesa – to compute non-rotating stellar models of 15, 20 and 25 M⊙ and compare their nucleosynthesis. We follow the evolution from the main sequence until the end of core helium burning. The genec and kepler models hold physics assumptions used in large grids of published models. The mesa code was set up to use convective core overshooting such that the CO core masses are consistent with those obtained by genec. For all models, full nucleosynthesis is computed using the NuGrid post-processing tool mppnp. We find that the surface abundances predicted by the models are in reasonable agreement. In the helium core, the standard deviation of the elemental overproduction factors for Fe to Mo is less than 30 per cent – smaller than the impact of the present nuclear physics uncertainties. For our three initial masses, the three stellar evolution codes yield consistent results. Differences in key properties of the models, e.g. helium and CO core masses and the time spent as a red supergiant, are traced back to the treatment of convection and, to a lesser extent, mass loss. The mixing processes in stars remain the key uncertainty in stellar modelling. Better constrained prescriptions are thus necessary to improve the predictive power of stellar evolution models

    The Molecular Hydrogen Deficit in Gamma-Ray Burst Afterglows

    Full text link
    Recent analysis of five gamma-ray burst (GRB) afterglow spectra reveal the absence of molecular hydrogen absorption lines, a surprising result in light of their large neutral hydrogen column densities and the detection of H2_2 in similar, more local star-forming regions like 30 Doradus in the Large Magellanic Cloud (LMC). Observational evidence further indicates that the bulk of the neutral hydrogen column in these sight lines lies 100 pc beyond the progenitor and that H2_2 was absent prior to the burst, suggesting that direct flux from the star, FUV background fields, or both suppressed its formation. We present one-dimensional radiation hydrodynamical models of GRB host galaxy environments, including self-consistent radiative transfer of both ionizing and Lyman-Werner photons, nine-species primordial chemistry with dust formation of H2_2, and dust extinction of UV photons. We find that a single GRB progenitor is sufficient to ionize neutral hydrogen to distances of 50 - 100 pc but that a galactic Lyman-Werner background is required to dissociate the molecular hydrogen in the ambient ISM. Intensities of 0.1 - 100 times the Galactic mean are necessary to destroy H2_2 in the cloud, depending on its density and metallicity. The minimum radii at which neutral hydrogen will be found in afterglow spectra is insensitive to the mass of the progenitor or the initial mass function (IMF) of its cluster, if present.Comment: 12 pages, 7 figures, accepted for Ap

    Constraints on explosive silicon burning in core-collapse supernovae from measured Ni/Fe ratios

    Get PDF
    Measurements of explosive nucleosynthesis yields in core-collapse supernovae provide tests for explosion models. We investigate constraints on explosive conditions derivable from measured amounts of nickel and iron after radioactive decays using nucleosynthesis networks with parameterized thermodynamic trajectories. The Ni/Fe ratio is for most regimes dominated by the production ratio of 58Ni/(54Fe + 56Ni), which tends to grow with higher neutron excess and with higher entropy. For SN 2012ec, a supernova that produced a Ni/Fe ratio of 3.4±1.23.4\pm1.2 times solar, we find that burning of a fuel with neutron excess η6×103\eta \approx 6\times 10^{-3} is required. Unless the progenitor metallicity is over 5 times solar, the only layer in the progenitor with such a neutron excess is the silicon shell. Supernovae producing large amounts of stable nickel thus suggest that this deep-lying layer can be, at least partially, ejected in the explosion. We find that common spherically symmetric models of MZAMS13M_{\rm ZAMS} \lesssim 13 Msun stars exploding with a delay time of less than one second (Mcut<1.5M_{\rm cut} < 1.5 Msun) are able to achieve such silicon-shell ejection. Supernovae that produce solar or sub-solar Ni/Fe ratios, such as SN 1987A, must instead have burnt and ejected only oxygen-shell material, which allows a lower limit to the mass cut to be set. Finally, we find that the extreme Ni/Fe value of 60-75 times solar derived for the Crab cannot be reproduced by any realistic-entropy burning outside the iron core, and neutrino-neutronization obtained in electron-capture models remains the only viable explanation.Comment: 13 pages, 9 figures, accepted for publication in Ap

    Ultraluminous X-ray Source Correlations with Star-Forming Regions

    Full text link
    Maps of low-inclination nearby galaxies in Sloan Digitized Sky Survey u-g, g-r and r-i colors are used to determine whether Ultraluminous X-ray sources (ULXs) are predominantly associated with star-forming regions of their host galaxies. An empirical selection criterion is derived from colors of HII regions in M81 and M101 that differentiates between the young, blue stellar component and the older disk and bulge population. This criterion is applied to a sample of 58 galaxies of Hubble type S0 and later and verified through an application of Fisher's linear discriminant analysis. It is found that 60% (49%) of ULXs in optically-bright environments are within regions blueward of their host galaxy's HII regions compared to only 27% (0%) of a control sample according to the empirical (Fisher) criterion. This is an excess of 3-sigma above the 32% (27%) expected if the ULXs were randomly distributed within their galactic hosts. This indicates a ULX preference for young, approximately <10 Myr, OB associations. However, none of the ULX environments have the morphology and optical brightness suggestive of a massive young super star cluster though several are in extended or crowded star-forming (blue) environments that may contain clusters unresolved by Sloan imaging. Ten of the 12 ULX candidates with estimated X-ray luminosities in excess of 3e39 erg/s are equally divided among the group of ULX environments redward of HII regions and the group of optically faint regions. This likely indicates that the brightest ULXs turn on at a time somewhat later than typical of HII regions; say 10-20 Myr after star formation has ended. This would be consistent with the onset of an accretion phase as the donor star ascends the giant branch if the donor is a <20 solar-mass star.Comment: 13 pages, accepted to Ap

    Dust during the Reionization

    Full text link
    The possibility that population III stars have reionized the Universe at redshifts greater than 6 has recently gained momentum with WMAP polarization results. Here we analyse the role of early dust produced by these stars and ejected into the intergalactic medium. We show that this dust, heated by the radiation from the same population III stars, produces a submillimetre excess. The electromagnetic spectrum of this excess could account for a significant fraction of the FIRAS (Far Infrared Absolute Spectrophotometer) cosmic far infrared background above 700 micron. This spectrum, a primary anisotropy (ΔT\Delta T) spectrum times the ν2\nu^2 dust emissivity law, peaking in the submillimetre domain around 750 micron, is generic and does not depend on other detailed dust properties. Arcminute--scale anisotropies, coming from inhomogeneities in this early dust, could be detected by future submillimetre experiments such as Planck HFI.Comment: 6 pages, 8 figures, accepted by A&A; clarifications made, typos fixed, results more exactly calculate

    The Detectability of Pair-Production Supernovae at z < 6

    Full text link
    Nonrotating, zero metallicity stars with initial masses 140 < M < 260 solar masses are expected to end their lives as pair-production supernovae (PPSNe), in which an electron-positron pair-production instability triggers explosive nuclear burning. Interest in such stars has been rekindled by recent theoretical studies that suggest primordial molecular clouds preferentially form stars with these masses. Since metal enrichment is a local process, the resulting PPSNe could occur over a broad range of redshifts, in pockets of metal-free gas. Using the implicit hydrodynamics code KEPLER, we have calculated a set of PPSN light curves that addresses the theoretical uncertainties and allows us to assess observational strategies for finding these objects at intermediate redshifts. The peak luminosities of typical PPSNe are only slightly greater than those of Type Ia, but they remain bright much longer (~ 1 year) and have hydrogen lines. Ongoing supernova searches may soon be able to limit the contribution of these very massive stars to < 1% of the total star formation rate density out to z=2 which already provides useful constraints for theoretical models. The planned Joint Dark Energy Mission satellite will be able to extend these limits out to z=6.Comment: 12 pages, 6 figures, ApJ in press; slightly revised version, a few typos correcte

    Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields

    Full text link
    As a massive star evolves through multiple stages of nuclear burning on its way to becoming a supernova, a complex, differentially rotating structure is set up. Angular momentum is transported by a variety of classic instabilities, and also by magnetic torques from fields generated by the differential rotation. We present the first stellar evolution calculations to follow the evolution of rotating massive stars including, at least approximately, all these effects, magnetic and non-magnetic, from the zero-age main sequence until the onset of iron-core collapse. The evolution and action of the magnetic fields is as described by Spruit 2002 and a range of uncertain parameters is explored. In general, we find that magnetic torques decrease the final rotation rate of the collapsing iron core by about a factor of 30 to 50 when compared with the non-magnetic counterparts. Angular momentum in that part of the presupernova star destined to become a neutron star is an increasing function of main sequence mass. That is, pulsars derived from more massive stars will rotate faster and rotation will play a more dominant role in the star's explosion. The final angular momentum of the core is determined - to within a factor of two - by the time the star ignites carbon burning. For the lighter stars studied, around 15 solar masses, we predict pulsar periods at birth near 15 ms, though a factor of two range is easily tolerated by the uncertainties. Several mechanisms for additional braking in a young neutron star, especially by fall back, are also explored.Comment: 32 pages, 3 figures (8 eps files), submitted to Ap
    corecore