193 research outputs found

    Поэтическая метафора в поэзии Г. Гейне

    Get PDF
    Работа посвящена анализу видов метафор в поэтических произведениях Г. Гейне. В теоретической части были выявлены отличительные особенности поэтических текстов, была дана содержательная характеристика метафоре как стилистическому приему. На основе классификации М.П. Брандес и Г.Н. Скляревской был произведен структурно-семанический анализ метафор в отобранных нами лирических стихотворениях Г.Гейне

    Differences in stress-induced modulation of the auditory system between Wistar and Lewis rats

    Get PDF
    Many aspects of stress-induced physiological and psychological effects have been characterized in people and animals. However, stress effects on the auditory system are less explored and their mechanisms are not well-understood, in spite of its relevance for a variety of diseases, including tinnitus. To expedite further research of stress-induced changes in the auditory system, here we compare the reactions to stress among Wistar and Lewis rats. The animals were stressed for 24 h, and subsequently we tested the functionality of the outer hair cells (OHCs) using distortion product otoacoustic emissions (DPOAEs) and auditory neurons using evoked auditory brainstem responses (ABR). Lastly, using Western blot, we analyzed the levels of plasticity-related proteins in the inferior colliculus, confirming that the inferior colliculus is involved in the adaptive changes that occur in the auditory system upon stress exposure. Surprisingly, the two strains reacted to stress quite differently: Lewis rats displayed a lowering of their auditory threshold, whereas it was increased in Wistar rats. These functional differences were seen in OHCs of the apical region (low frequencies) and in the auditory neurons (across several frequencies) from day 1 until 2 weeks after the experimental stress ended. Wistar and Lewis rats may thus provide models for auditory threshold increase and decrease, respectively, which can both be observed in different patients in response to stress

    Thermal Conductivity of Taylor Phase Al_3(Mn,Pd) Complex Metallic Alloys

    Get PDF
    Thermal conductivity, κ, of Taylor phase T-Al_73Mn_27–xPd_x (x = 0,2,4,6) complex metallic alloys (CMAs) has been studied in the temperature interval from 2 K to 300 K. The characteristics of κ are typical for the CMAs: a relatively small value, a change of slope at about 50 K and an increase of slope above 100 K. The value of κ is between 2.7 W/m K and 3.7 W/m K at room temperature. The low thermal conductivity has it’s origin in a complex structure: aperiodic on a short length scale, which leads to frequent electron scattering (i.e. to a low electronic contribution to the thermal conductivity), while the large lattice constant defines a small Brillouin zone that enhances umklapp scattering of extended phonons. Above 100 K the non-extended (localized) lattice vibrations are thermally excited, and hopping gives a new heat carrying channel resulting in typical increase of the thermal conductivity with temperature

    Thermal Conductivity of Taylor Phase Al_3(Mn,Pd) Complex Metallic Alloys

    Get PDF
    Thermal conductivity, κ, of Taylor phase T-Al_73Mn_27–xPd_x (x = 0,2,4,6) complex metallic alloys (CMAs) has been studied in the temperature interval from 2 K to 300 K. The characteristics of κ are typical for the CMAs: a relatively small value, a change of slope at about 50 K and an increase of slope above 100 K. The value of κ is between 2.7 W/m K and 3.7 W/m K at room temperature. The low thermal conductivity has it’s origin in a complex structure: aperiodic on a short length scale, which leads to frequent electron scattering (i.e. to a low electronic contribution to the thermal conductivity), while the large lattice constant defines a small Brillouin zone that enhances umklapp scattering of extended phonons. Above 100 K the non-extended (localized) lattice vibrations are thermally excited, and hopping gives a new heat carrying channel resulting in typical increase of the thermal conductivity with temperature

    Thermal Conductivity of Taylor Phase Al3(Mn,Pd) Complex Metallic Alloys

    Get PDF
    Thermal conductivity, κ, of Taylor phase T-Al73Mn27–xPdx (x = 0,2,4,6) complex metallic alloys (CMAs) has been studied in the temperature interval from 2 K to 300 K. The characteristics of κ are typical for the CMAs: a relatively small value, a change of slope at about 50 K and an increase of slope above 100 K. The value of κ is between 2.7 W/m K and 3.7 W/m K at room temperature. The low thermal conductivity has it’s origin in a complex structure: aperiodic on a short length scale, which leads to frequent electron scattering (i.e. to a low electronic contribution to the thermal conductivity), while the large lattice constant defines a small Brillouin zone that enhances umklapp scattering of extended phonons. Above 100 K the non-extended (localized) lattice vibrations are thermally excited, and hopping gives a new heat carrying channel resulting in typical increase of the thermal conductivity with temperature.</p

    William Penn\u27s Experiment In The Wilderness: Promise And Legend

    Get PDF
    corecore