210 research outputs found

    On the Complexity of Local Distributed Graph Problems

    Full text link
    This paper is centered on the complexity of graph problems in the well-studied LOCAL model of distributed computing, introduced by Linial [FOCS '87]. It is widely known that for many of the classic distributed graph problems (including maximal independent set (MIS) and (Δ+1)(\Delta+1)-vertex coloring), the randomized complexity is at most polylogarithmic in the size nn of the network, while the best deterministic complexity is typically 2O(logn)2^{O(\sqrt{\log n})}. Understanding and narrowing down this exponential gap is considered to be one of the central long-standing open questions in the area of distributed graph algorithms. We investigate the problem by introducing a complexity-theoretic framework that allows us to shed some light on the role of randomness in the LOCAL model. We define the SLOCAL model as a sequential version of the LOCAL model. Our framework allows us to prove completeness results with respect to the class of problems which can be solved efficiently in the SLOCAL model, implying that if any of the complete problems can be solved deterministically in logO(1)n\log^{O(1)} n rounds in the LOCAL model, we can deterministically solve all efficient SLOCAL-problems (including MIS and (Δ+1)(\Delta+1)-coloring) in logO(1)n\log^{O(1)} n rounds in the LOCAL model. We show that a rather rudimentary looking graph coloring problem is complete in the above sense: Color the nodes of a graph with colors red and blue such that each node of sufficiently large polylogarithmic degree has at least one neighbor of each color. The problem admits a trivial zero-round randomized solution. The result can be viewed as showing that the only obstacle to getting efficient determinstic algorithms in the LOCAL model is an efficient algorithm to approximately round fractional values into integer values

    Game saturation of intersecting families

    Get PDF
    We consider the following combinatorial game: two players, Fast and Slow, claim kk-element subsets of [n]={1,2,...,n}[n]=\{1,2,...,n\} alternately, one at each turn, such that both players are allowed to pick sets that intersect all previously claimed subsets. The game ends when there does not exist any unclaimed kk-subset that meets all already claimed sets. The score of the game is the number of sets claimed by the two players, the aim of Fast is to keep the score as low as possible, while the aim of Slow is to postpone the game's end as long as possible. The game saturation number is the score of the game when both players play according to an optimal strategy. To be precise we have to distinguish two cases depending on which player takes the first move. Let gsatF(In,k)gsat_F(\mathbb{I}_{n,k}) and gsatS(In,k)gsat_S(\mathbb{I}_{n,k}) denote the score of the saturation game when both players play according to an optimal strategy and the game starts with Fast's or Slow's move, respectively. We prove that Ωk(nk/35)gsatF(In,k),gsatS(In,k)Ok(nkk/2)\Omega_k(n^{k/3-5}) \le gsat_F(\mathbb{I}_{n,k}),gsat_S(\mathbb{I}_{n,k}) \le O_k(n^{k-\sqrt{k}/2}) holds

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Analysis of LIGO data for gravitational waves from binary neutron stars

    Get PDF
    We report on a search for gravitational waves from coalescing compact binary systems in the Milky Way and the Magellanic Clouds. The analysis uses data taken by two of the three LIGO interferometers during the first LIGO science run and illustrates a method of setting upper limits on inspiral event rates using interferometer data. The analysis pipeline is described with particular attention to data selection and coincidence between the two interferometers. We establish an observational upper limit of R<\mathcal{R}<1.7 \times 10^{2}peryearperMilkyWayEquivalentGalaxy(MWEG),with90coalescencerateofbinarysystemsinwhicheachcomponenthasamassintherange13 per year per Milky Way Equivalent Galaxy (MWEG), with 90% confidence, on the coalescence rate of binary systems in which each component has a mass in the range 1--3 M_\odot$.Comment: 17 pages, 9 figure

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    Small rainbow cliques in randomly perturbed dense graphs

    Get PDF
    For two graphs G and H, write G rbw −→ H if G has the property that every proper colouring of its edges yields a rainbow copy of H. We study the thresholds for such so-called anti-Ramsey properties in randomly perturbed dense graphs, which are unions of the form G ∪ G(n, p), where G is an n-vertex graph with edge-density at least d > 0, and d is independent of n. In a companion paper, we proved that the threshold for the property G ∪ G(n, p) rbw −→ K` is n −1/m2(Kd`/2e) , whenever ` ≥ 9. For smaller `, the thresholds behave more erratically, and for 4 ≤ ` ≤ 7 they deviate downwards significantly from the aforementioned aesthetic form capturing the thresholds for large cliques. In particular, we show that the thresholds for ` ∈ {4, 5, 7} are n −5/4 , n −1 , and n −7/15, respectively. For ` ∈ {6, 8} we determine the threshold up to a (1 + o(1))-factor in the exponent: they are n −(2/3+o(1)) and n −(2/5+o(1)), respectively. For ` = 3, the threshold is n −2 ; this follows from a more general result about odd cycles in our companion paper

    Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers

    Get PDF
    We study frequency dependent (FD) input-output schemes for signal-recycling interferometers, the baseline design of Advanced LIGO and the current configuration of GEO 600. Complementary to a recent proposal by Harms et al. to use FD input squeezing and ordinary homodyne detection, we explore a scheme which uses ordinary squeezed vacuum, but FD readout. Both schemes, which are sub-optimal among all possible input-output schemes, provide a global noise suppression by the power squeeze factor, while being realizable by using detuned Fabry-Perot cavities as input/output filters. At high frequencies, the two schemes are shown to be equivalent, while at low frequencies our scheme gives better performance than that of Harms et al., and is nearly fully optimal. We then study the sensitivity improvement achievable by these schemes in Advanced LIGO era (with 30-m filter cavities and current estimates of filter-mirror losses and thermal noise), for neutron star binary inspirals, and for narrowband GW sources such as low-mass X-ray binaries and known radio pulsars. Optical losses are shown to be a major obstacle for the actual implementation of these techniques in Advanced LIGO. On time scales of third-generation interferometers, like EURO/LIGO-III (~2012), with kilometer-scale filter cavities, a signal-recycling interferometer with the FD readout scheme explored in this paper can have performances comparable to existing proposals. [abridged]Comment: Figs. 9 and 12 corrected; Appendix added for narrowband data analysi

    First upper limits from LIGO on gravitational wave bursts

    Get PDF
    We report on a search for gravitational wave bursts using data from the first science run of the LIGO detectors. Our search focuses on bursts with durations ranging from 4 ms to 100 ms, and with significant power in the LIGO sensitivity band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than 1.6 events per day at 90% confidence level. This result is interpreted in terms of the detection efficiency for ad hoc waveforms (Gaussians and sine-Gaussians) as a function of their root-sum-square strain h_{rss}; typical sensitivities lie in the range h_{rss} ~ 10^{-19} - 10^{-17} strain/rtHz, depending on waveform. We discuss improvements in the search method that will be applied to future science data from LIGO and other gravitational wave detectors.Comment: 21 pages, 15 figures, accepted by Phys Rev D. Fixed a few small typos and updated a few reference

    Searching for gravitational waves from known pulsars

    Get PDF
    We present upper limits on the amplitude of gravitational waves from 28 isolated pulsars using data from the second science run of LIGO. The results are also expressed as a constraint on the pulsars' equatorial ellipticities. We discuss a new way of presenting such ellipticity upper limits that takes account of the uncertainties of the pulsar moment of inertia. We also extend our previous method to search for known pulsars in binary systems, of which there are about 80 in the sensitive frequency range of LIGO and GEO 600.Comment: Accepted by CQG for the proceeding of GWDAW9, 7 pages, 2 figure

    Setting upper limits on the strength of periodic gravitational waves from PSR J1939+2134 using the first science data from the GEO 600 and LIGO detectors

    Get PDF
    Data collected by the GEO 600 and LIGO interferometric gravitational wave detectors during their first observational science run were searched for continuous gravitational waves from the pulsar J1939+2134 at twice its rotation frequency. Two independent analysis methods were used and are demonstrated in this paper: a frequency domain method and a time domain method. Both achieve consistent null results, placing new upper limits on the strength of the pulsar's gravitational wave emission. A model emission mechanism is used to interpret the limits as a constraint on the pulsar's equatorial ellipticity
    corecore