482 research outputs found

    USING GASEOUS EMISSIONS OF A PROTON ACCELERATOR FACILITY AS TRACER FOR SMALL-SCALE ATMOSPHERIC DISPERSION

    Get PDF
    The gaseous effluents of the proton accelerator facility located in the Western part of the Paul Scherrer Institute, Aargau, Switzerland, contain a mixture of positron emitters (50 % 15O, 20 % 13N and 30 % 11C). For the experimental verification of a future upgrade of the dispersion model in the complex topography of the Aare valley, a measuring campaign using three continuous gamma-spectrometric measuring stations was launched in 2011. The concept of a modified man-made-gross-count (MMGC) ratio yields a clear signal associated with the positron emitters while minimising the influence of radon progeny rain-out events. A dependence of the measured MMGC ratios on the emitted activity and wind direction could be demonstrated using frequency distributions of the modified MMGC ratio measured in 2012 and 2013. A significant fraction of high MMGC-ratio values was found associated with dispersion directions (based on measurements of the wind direction in 70 m above ground) not towards or even against the direction between stack and measuring statio

    Proceedings of Pulsed Magnet Design and Measurement Workshop

    Get PDF
    The goals of the Workshop are to assess the design of pulsed system at the NSLS-II and establish mitigation strategies for critical issues during development. The focus of the Workshop is on resolving questions related to the set-up of the pulsed magnet laboratory, on measuring the pulsed magnet's current waveforms and fields, and on achieving tight tolerances on the magnet's alignment and field quality

    Very high rotational frequencies and band termination in 73Br

    Get PDF
    Rotational bands in 73Br have been investigated up to spins of 65/2 using the EUROBALL III spectrometer. One of the negative-parity bands displays the highest rotational frequency 1.85 MeV reported to date in nuclei with mass number greater than 25. At high frequencies, the experimental dynamic moment of inertia for all bands decrease to very low values, indicating a loss of collectivity. The bands are described in the configuration-dependent cranked Nilsson-Strutinsky model. The calculations indicate that one of the negative-parity bands is observed up to its terminating single-particle state at spin 63/2. This result establishes the first band termination case in the A = 70 mass region.Comment: 6 pages, 6 figures, submitted to Phys. Rev. C as a Rapid Communicatio

    Continuous vertical aerosol profiling with a multi-wavelength Raman polarization lidar over the Pearl River Delta, China

    Get PDF
    A dataset of particle optical properties of the highly polluted atmosphere over the Pearl River Delta (PRD), Guangzhou, China, is presented in this paper. The data were derived from the measurements of a multi-wavelength Raman and depolarization lidar PollyXT and a co-located AERONET sun photometer. The measurement campaign was conducted from November 2011 to mid-June 2012. These are the first Raman lidar measurements in the PRD that lasted for several months. A mean value of aerosol optical depth (AOD) of 0.54 ± 0.33 was observed by the sun photometer at 500 nm in the polluted atmosphere over this megacity for the whole measurement period. The lidar profiles frequently show lofted aerosol layers, which reach altitudes of up to 2 to 3 km and, especially during the spring season, up to 5 km. These layers contain between 12 and 56 % of the total AOD, with the highest values in spring. The aerosol types in these lofted layers are classified by their optical properties. The observed lidar ratio values range from 30 to 80 sr with a mean value of 48.0 ± 10.7 sr at 532 nm. The linear particle depolarization ratio at 532 nm lies mostly below 5 %, with a mean value of 3.6 ± 3.7 %. The majority of the Ångström exponents lie between 0.5 and 1.5, indicating a mixture of fine- and coarse-mode aerosols. These results reveal that mostly urban pollution particles mixed with particles produced from biomass and industrial burning are present in the atmosphere above the Pearl River Delta. Trajectory analyses show that these pollution mixtures arise mainly from local and regional sources

    Projected shell model study for the yrast-band structure of the proton-rich mass-80 nuclei

    Get PDF
    A systematic study of the yrast-band structure for the proton-rich, even-even mass-80 nuclei is carried out using projected shell model approach. We describe the the energy spectra, transition quadrupole moments and gyromagnetic factors. The observed variations in energy spectra and transition quadrupole moments in this mass region are discussed in terms of the configuration mixing of the projected deformed Nilsson states as a function of shell filling.Comment: 22 pages, 7 figure

    Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight

    Get PDF
    Many species travel in highly organized groups. The most quoted function of these configurations is to reduce energy expenditure and enhance locomotor performance of individuals in the assemblage. The distinctive V formation of bird flocks has long intrigued researchers and continues to attract both scientific and popular attention. The well-held belief is that such aggregations give an energetic benefit for those birds that are flying behind and to one side of another bird through using the regions of upwash generated by the wings of the preceding bird4,7,9,10,11, although a definitive account of the aerodynamic implications of these formations has remained elusive. Here we show that individuals of northern bald ibises (Geronticus eremita) flying in a V flock position themselves in aerodynamically optimum positions, in that they agree with theoretical aerodynamic predictions. Furthermore, we demonstrate that birds show wingtip path coherence when flying in V positions, flapping spatially in phase and thus enabling upwash capture to be maximized throughout the entire flap cycle. In contrast, when birds fly immediately behind another bird—in a streamwise position—there is no wingtip path coherence; the wing-beats are in spatial anti-phase. This could potentially reduce the adverse effects of downwash for the following bird. These aerodynamic accomplishments were previously not thought possible for birds because of the complex flight dynamics and sensory feedback that would be required to perform such a feat. We conclude that the intricate mechanisms involved in V formation flight indicate awareness of the spatial wake structures of nearby flock-mates, and remarkable ability either to sense or predict it. We suggest that birds in V formation have phasing strategies to cope with the dynamic wakes produced by flapping wings
    • …
    corecore