90 research outputs found

    Approaches Towards the Detection of Sepsis: A Review

    Get PDF
    Our understanding of sepsis and its mechanisms have never been more important than they are today. In recent years we have seen sepsis manifest from bacterial infection to a broader range of pathogens, each with its unique responses from the body. This increased interest has only been further intensified by the Covid-19 pandemic and the renewed global attention towards viral-based infections and their interactions with sepsis. From Systemic inflammatory response syndrome (SIRS) to sequential organ failure assessment score (SOFA), studies have shown that early diagnosis is key, as well as finding the root of the infection to prevent further damage caused to the patient. Prompt treatment has contributed to the overall improvement of sepsis outcomes. This review summarizes the development of the cause, diagnosis, and treatments available to date

    The role of regulated secretion in neurite outgrowth, synapse formation and neuronal survival : Munc-18-1 as a spider in the web

    Get PDF
    Verhage, M. [Promotor

    Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy.

    Get PDF
    Neocortical epilepsy is frequently drug-resistant. Surgery to remove the epileptogenic zone is only feasible in a minority of cases, leaving many patients without an effective treatment. We report the potential efficacy of gene therapy in focal neocortical epilepsy using a rodent model in which epilepsy is induced by tetanus toxin injection in the motor cortex. By applying several complementary methods that use continuous wireless electroencephalographic monitoring to quantify epileptic activity, we observed increases in high frequency activity and in the occurrence of epileptiform events. Pyramidal neurons in the epileptic focus showed enhanced intrinsic excitability consistent with seizure generation. Optogenetic inhibition of a subset of principal neurons transduced with halorhodopsin targeted to the epileptic focus by lentiviral delivery was sufficient to attenuate electroencephalographic seizures. Local lentiviral overexpression of the potassium channel Kv1.1 reduced the intrinsic excitability of transduced pyramidal neurons. Coinjection of this Kv1.1 lentivirus with tetanus toxin fully prevented the occurrence of electroencephalographic seizures. Finally, administration of the Kv1.1 lentivirus to an established epileptic focus progressively suppressed epileptic activity over several weeks without detectable behavioral side effects. Thus, gene therapy in a rodent model can be used to suppress seizures acutely, prevent their occurrence after an epileptogenic stimulus, and successfully treat established focal epilepsy

    Deletion of Munc18-1 in 5-HT Neurons Results in Rapid Degeneration of the 5-HT System and Early Postnatal Lethality

    Get PDF
    The serotonin (5-HT) system densely innervates many brain areas and is important for proper brain development. To specifically ablate the 5-HT system we generated mutant mice carrying a floxed Munc18-1 gene and Cre recombinase driven by the 5-HT-specific serotonin reuptake transporter (SERT) promoter. The majority of mutant mice died within a few days after birth. Immunohistochemical analysis of brains of these mice showed that initially 5-HT neurons are formed and the cortex is innervated with 5-HT projections. From embryonic day 16 onwards, however, 5-HT neurons started to degenerate and at postnatal day 2 hardly any 5-HT projections were present in the cortex. The 5-HT system of mice heterozygous for the floxed Munc18-1 allele was indistinguishable from control mice. These data show that deletion of Munc18-1 in 5-HT neurons results in rapid degeneration of the 5-HT system and suggests that the 5-HT system is important for postnatal survival

    Munc18 and Munc13 regulate early neurite outgrowth

    Get PDF
    Background information. During development, growth cones of outgrowing neurons express proteins involved in vesicular secretion, such as SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) proteins, Munc13 and Munc18. Vesicles are known to fuse in growth cones prior to synapse formation, which may contribute to outgrowth
    corecore