80 research outputs found

    Warm temperatures at bloom reduce fruit set in sweet cherry

    Get PDF
    Warm springs have often been assumed as a prelude of a good fruit set in temperate fruit tree species. However, recently, evidences have accumulated on erratic fruit set under apparently good and warm springs in Mediterranean conditions. The fact that these observations mainly occurred in sweet cherry (Prunus avium), a species adapted to high latitudes and cold climates raised the question of whether warm temperatures at flowering could have a detrimental effect on fruit set. To evaluate this hypothesis two different sweet cherry cultivars were subjected under field conditions to a slight increase in temperature at bloom over two different years. While the minimum temperature remained stable, the maximum temperature increased 5-7ÂșC, resulting in a moderate increase of the average temperature of 1-3ÂșC. This was sufficient to drastically reduce fruit set in both years and cultivars. To know the vulnerable phase to warm temperatures the process was timed back: final fruit set differences were established in the first three weeks following pollination, but the onset of fruiting – when these differences appeared – was tracked back to one week after pollination. The process from pollination to fertilization was examined under both conditions. Fertilization occurred six days after pollination. Higher temperatures accelerated pollen tube growth rate but also reduced the number of growing pollen tubes along the style. In the ovary, the warm treatment accelerated ovule degeneration. These findings alert on the potential negative effect of even slight increases in temperature during cherry blooming, which nowadays – due to global warming trends – is a plausible and realistic scenario under Mediterranean climatic conditions

    S-Locus genotyping in Japanese plum by high throughput sequencing using a synthetic S-loci reference sequence

    Get PDF
    Self-incompatibility in Prunus species is governed by a single locus consisting of two highly multi-allelic and tightly linked genes, one coding for an F-box protein—i.e., SFB in Prunus- controlling the pollen specificity and one coding for an S-RNase gene controlling the pistil specificity. Genotyping the allelic combination in a fruit tree species is an essential procedure both for cross-based breeding and for establishing pollination requirements. Gel-based PCR techniques using primer pairs designed from conserved regions and spanning polymorphic intronic regions are traditionally used for this task. However, with the great advance of massive sequencing techniques and the lowering of sequencing costs, new genotyping-by-sequencing procedures are emerging. The alignment of resequenced individuals to reference genomes, commonly used for polymorphism detection, yields little or no coverage in the S-locus region due to high polymorphism between different alleles within the same species, and cannot be used for this purpose. Using the available sequences of Japanese plum S-loci concatenated in a rosary-like structure as synthetic reference sequence, we describe a procedure to accurately genotype resequenced individuals that allowed the analysis of the S-genotype in 88 Japanese plum cultivars, 74 of them are reported for the first time. In addition to unraveling two new S-alleles from published reference genomes, we identified at least two S-alleles in 74 cultivars. According to their S-allele composition, they were assigned to 22 incompatibility groups, including nine new incompatibility groups reported here for the first time (XXVII-XXXV)

    Male Meiosis as a Biomarker for Endo- to Ecodormancy Transition in Apricot

    Get PDF
    Dormancy is an adaptive strategy in plants to survive under unfavorable climatic conditions during winter. In temperate regions, most fruit trees need exposure to a certain period of low temperatures to overcome endodormancy. After endodormancy release, exposure to warm temperatures is needed to flower (ecodormancy). Chilling and heat requirements are genetically determined and, therefore, are specific for each species and cultivar. The lack of sufficient winter chilling can cause failures in flowering and fruiting, thereby compromising yield. Thus, the knowledge of the chilling and heat requirements is essential to optimize cultivar selection for different edaphoclimatic conditions. However, the lack of phenological or biological markers linked to the dormant and forcing periods makes it difficult to establish the end of endodormancy. This has led to indirect estimates that are usually not valid in different agroclimatic conditions. The increasing number of milder winters caused by climatic change and the continuous release of new cultivars emphasize the necessity of a proper biological marker linked to the endo- to ecodormancy transition for an accurate estimation of the agroclimatic requirements (AR) of each cultivar. In this work, male meiosis is evaluated as a biomarker to determine endodormancy release and to estimate both chilling and heat requirements in apricot. For this purpose, pollen development was characterized histochemically in 20 cultivars over 8 years, and the developmental stages were related to dormancy. Results were compared to three approaches that indirectly estimate the breaking of dormancy: an experimental methodology by evaluating bud growth in shoots collected periodically throughout the winter months and transferred to forcing chambers over 3 years, and two statistical approaches that relate seasonal temperatures and blooming dates in a series of 11–20 years by correlation and partial least square regression. The results disclose that male meiosis is a possible biomarker to determine the end of endodormancy and estimate AR in apricot. Copyright © 2022 Herrera, Lora, FadĂłn, Hedhly, Alonso, Hormaza and Rodrigo

    Yield in almond is related more to the abundance of flowers than the relative number of flowers that set fruit

    Get PDF
    Almond tree yield is a function of the number of flowers on a tree and the percentage of flowers that set fruit. Almonds are borne on spurs (short proleptic shoots that can have both leaves and flowers). Almond tree spur dynamics research has documented that previous year spur leaf area is a predictive parameter for year-to-year spur survival, spur flowering and to a lesser extent spur fruiting, while previous year fruit bearing has a negative impact on subsequent year flowering. However, a question remained about whether yields are more dependent on flower numbers or relative fruit set of the flowers that are present. The aim of the present work was to compare the importance of flower abundance with that of relative fruit set in determining the productivity of a population of tagged spurs in almond trees over a 6-year period. Overall tree yield among years was more sensitive to total number of flowers on a tree rather than relative fruit set. These results emphasize the importance of maintaining large populations of healthy flowering spurs for sustained high production in almond orchards

    High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit

    Get PDF
    Heat stress can cause severe crop yield losses by impairing reproductive development. However, the underlying mechanisms are poorly understood. We examined patterns of carbon allocation and activities of sucrose cleavage enzymes in heat-tolerant (HT) and -sensitive (HS) tomato (Solanum lycopersicum L.) lines subjected to normal (control) and heat stress temperatures. At the control temperature of 25/20 °C (day/night) the HT line exhibited higher cell wall invertase (CWIN) activity in flowers and young fruits and partitioned more sucrose to fruits but less to vegetative tissues as compared to the HS line, independent of leaf photosynthetic capacity. Upon 2-, 4-, or 24-h exposure to day or night temperatures of 5 °C or more above 25/20 °C, cell wall (CWIN) and vacuolar invertases (VIN), but not sucrose synthase (SuSy), activities in young fruit of the HT line were significantly higher than those of the HS line. The HT line had a higher level of transcript of a CWIN gene, Lin7, in 5-day fruit than the HS line under control and heat stress temperatures. Interestingly, heat induced transcription of an invertase inhibitor gene, INVINH1, but reduced its protein abundance. Transcript levels of LePLDa1, encoding phospholipase D, which degrades cell membranes, was less in the HT line than in the HS line after exposure to heat stress. The data indicate that high invertase activity of, and increased sucrose import into, young tomato fruit could contribute to their heat tolerance through increasing sink strength and sugar signalling activities, possibly regulating a programmed cell death pathway

    Non-destructive determination of floral staging in cereals using X-ray micro computed tomography (”CT)

    Get PDF
    Background Accurate floral staging is required to aid research into pollen and flower development, in particular male development. Pollen development is highly sensitive to stress and is critical for crop yields. Research into male development under environmental change is important to help target increased yields. This is hindered in monocots as the flower develops internally in the pseudostem. Floral staging studies therefore typically rely on destructive analysis, such as removal from the plant, fixation, staining and sectioning. This time-consuming analysis therefore prevents follow up studies and analysis past the point of the floral staging. Results This study focuses on using X-ray ”CT scanning to allow quick and detailed non-destructive internal 3D phenotypic information to allow accurate staging of Arabidopsis thaliana L. and Barley (Hordeum vulgare L.) flowers. X-ray ”CT has previously relied on fixation methods for above ground tissue, therefore two contrast agents (Lugol’s iodine and Bismuth) were observed in Arabidopsis and Barley in planta to circumvent this step. 3D models and 2D slices were generated from the X-ray ”CT images providing insightful information normally only available through destructive time-consuming processes such as sectioning and microscopy. Barley growth and development was also monitored over three weeks by X-ray ”CT to observe flower development in situ. By measuring spike size in the developing tillers accurate non-destructive staging at the flower and anther stages could be performed; this staging was confirmed using traditional destructive microscopic analysis. Conclusion The use of X-ray micro computed tomography (”CT) scanning of living plant tissue offers immense benefits for plant phenotyping, for successive developmental measurements and for accurate developmental timing for scientific measurements. Nevertheless, X-ray ”CT remains underused in plant sciences, especially in above-ground organs, despite its unique potential in delivering detailed non-destructive internal 3D phenotypic information. This work represents a novel application of X-ray ”CT that could enhance research undertaken in monocot species to enable effective non-destructive staging and developmental analysis for molecular genetic studies and to determine effects of stresses at particular growth stages
    • 

    corecore