73 research outputs found

    Sister species diverge in modality-specific courtship signal form and function

    Get PDF
    Understanding the relative importance of different sources of selection (e.g., the environment, social/sexual selection) on the divergence or convergence of reproductive communication can shed light on the origin, maintenance, or even disappearance of species boundaries. Using a multistep approach, we tested the hypothesis that two presumed sister species of wolf spider with overlapping ranges and microhabitat use, yet differing degrees of sexual dimorphism, have diverged in their reliance on modality- specific courtship signaling. We predicted that male Schizocosa crassipalpata (no ornamentation) rely predominantly on diet-dependent vibratory signaling for mating success. In contrast, we predicted that male S. bilineata (black foreleg brushes) rely on diet-dependent visual signaling. We first tested and corroborated the sister-species relationship between S. crassipalpata and S. bilineata using phylogenomic scale data. Next, we tested for species-specific, diet-dependent vibratory and visual signaling by manipulating subadult diet and subsequently quantifying adult morphology and mature male courtship signals. As predicted, vibratory signal form was diet-dependent in S. crassipalpata, while visual ornamentation (brush area) was diet-dependent in S. bilineata. We then compared the species-specific reliance on vibratory and visual signaling by recording mating across artificially manipulated signaling environments (presence/absence of each modality in a 2 × 2 full factorial design). In accordance with our diet dependence results for S. crassipalpata, the presence of vibratory signaling was important for mating success. In contrast, the light and vibratory environment interacted to influence mating success in S. bilineata, with vibratory signaling being important only in the absence of light. We found no differences in overall activity patterns. Given that these species overlap in much of their range and microhabitat use, we suggest that competition for signaling space may have led to the divergence and differential use of sensory modalities between these sister species

    Sexual Signalling in Propithecus verreauxi: Male “Chest Badge” and Female Mate Choice

    Get PDF
    Communication, an essential prerequisite for sociality, involves the transmission of signals. A signal can be defined as any action or trait produced by one animal, the sender, that produces a change in the behaviour of another animal, the receiver. Secondary sexual signals are often used for mate choice because they may inform on a potential partner's quality. Verreaux's sifaka (Propithecus verreauxi) is characterized by the presence of two different morphs of males (bimorphism), which can show either a stained or clean chest. The chest becomes stained by secretions of the sternal gland during throat marking (rubbing throat and chest on a vertical substrate while smearing the scent deposition). The role of the chest staining in guiding female mate choice was previously hypothesized but never demonstrated probably due to the difficulty of observing sifaka copulations in the wild. Here we report that stained-chested males had a higher throat marking activity than clean-chested males during the mating season, but not during the birth season. We found that females copulated more frequently with stained-chested males than the clean-chested males. Finally, in agreement with the biological market theory, we found that clean-chested males, with a lower scent-releasing potential, offered more grooming to females. This “grooming for sex” tactic was not completely unsuccessful; in fact, half of the clean-chested males copulated with females, even though at low frequency. In conclusion, the chest stain, possibly correlated with different cues targeted by females, could be one of the parameters which help females in selecting mates

    Sexual Display and Mate Choice in an Energetically Costly Environment

    Get PDF
    Sexual displays and mate choice often take place under the same set of environmental conditions and, as a consequence, may be exposed to the same set of environmental constraints. Surprisingly, however, very few studies consider the effects of environmental costs on sexual displays and mate choice simultaneously. We conducted an experiment, manipulating water flow in large flume tanks, to examine how an energetically costly environment might affect the sexual display and mate choice behavior of male and female guppies, Poecilia reticulata. We found that male guppies performed fewer sexual displays and became less choosy, with respect to female size, in the presence of a water current compared to those tested in still water. In contrast to males, female responsive to male displays did not differ between the water current treatments and females exhibited no mate preferences with respect to male size or coloration in either treatment. The results of our study underscore the importance of considering the simultaneous effects of environmental costs on the sexual behaviors of both sexes

    An Indirect Cue of Predation Risk Counteracts Female Preference for Conspecifics in a Naturally Hybridizing Fish Xiphophorus birchmanni

    Get PDF
    Mate choice is context dependent, but the importance of current context to interspecific mating and hybridization is largely unexplored. An important influence on mate choice is predation risk. We investigated how variation in an indirect cue of predation risk, distance to shelter, influences mate choice in the swordtail Xiphophorus birchmanni, a species which sometimes hybridizes with X. malinche in the wild. We conducted mate choice experiments to determine whether females attend to the distance to shelter and whether this cue of predation risk can counteract female preference for conspecifics. Females were sensitive to shelter distance independent of male presence. When conspecific and heterospecific X. malinche males were in equally risky habitats (i.e., equally distant from shelter), females associated primarily with conspecifics, suggesting an innate preference for conspecifics. However, when heterospecific males were in less risky habitat (i.e., closer to shelter) than conspecific males, females no longer exhibited a preference, suggesting that females calibrate their mate choices in response to predation risk. Our findings illustrate the potential for hybridization to arise, not necessarily through reproductive “mistakes”, but as one of many potential outcomes of a context-dependent mate choice strategy

    Courtship, egg sac construction, and maternal care in Kukulcania hibernalis, with information on the courtship of Misionella mendensis (Araneae, Filistatidae)

    Get PDF
    Morphological and behavioural traits place Filistatidae basally within Araneomorphae, although some features, such as their continuing to moult after reaching adulthood, are reminiscent of mygalomorph spiders. This paper describes the courtship behaviour and other aspects of the reproductive biology of Kukulcania hibernalis and Misionella mendensis, and compares this information with that from related filistatid species and with Mygalomorphae. K. hibernalis has some unique behaviours during courtship (e.g. male lays threads on female web); other behaviours are probably widespread within Filistatidae (e.g. male uses the tarsi and metatarsi of one of his legs to rub the basal sections of the female’s legs and the sides of her cephalothorax). Some other behaviours seem more similar to Mygalomorphae than to those of other, more derived Araneomorphae. These include male construction of a large sperm web, and the positions of male and female facing each other during copulation, with the male holding the female cephalothorax lifted while insertions occur, similar to some mygalomorphs. The adult female K. hibernalis and the first instar spiderlings (outside the egg sac) feed simultaneously on the same prey, but spiderlings are also capable of cooperating during the attack of large prey. The courtship behaviour supports the hypothesis that places Filistatidae basally within Araneomorphae.UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Biologí

    Aggressive communication in aquatic environments

    Get PDF
    © 2019 The Author. Functional Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. Aggressive interactions are ubiquitous among animals. They are either directed towards heterospecifics, like predators or competitors, or conspecifics. During intraspecific encounters, aggression often serves to establish hierarchies within the social group. Thus, in order to understand the mechanisms mediating social organization, it is important to comprehend the escalation and avoidance of aggressive behaviour. Overt aggressive interactions are costly not only in terms of increased risk of injury or death, but also due to opportunity costs and energy expenditure. In order to reduce these costs, animals are expected to communicate their strength and aggressive motivation prior to fights. For this purpose, they use different means of communication in various sensory modalities, that is visual, acoustic, chemical, mechanosensory and electric cues. These different modalities can convey different or similar information, underlining the importance of understanding the multimodal communication of aggression. Thus far, most studies on signalling during aggressive encounters have focussed on visual or acoustic cues, most likely as these are the two modalities predominantly used by humans. However, depending on the species’ ecology, visual or acoustic cues might play a minor role for many species. Especially in aquatic systems, visual communication is often hampered due to high levels of turbidity or limited light conditions. Here, alternative modalities such as chemical, mechanical or electrical cues are expected to play a prominent role. In this review, I provide an overview of different modalities used during aggressive communication in aquatic organisms. I highlight the importance of studying the role of multimodal communication during aggressive encounters in general and discuss the importance of understanding aquatic communication in the light of conservation and animal welfare issues

    Anthropogenic noise is associated with changes in acoustic but not visual signals in red-winged blackbirds

    Full text link
    Some birds in noisy areas produce songs with higher frequency and/or amplitude and altered timing compared to individuals in quiet areas. These changes may function to increase the efficacy of acoustic signals by reducing masking by noise. We collected audio recordings of red-winged blackbirds and measured noise levels. We found that males in noisier places produced songs with fewer syllables and slower repeat rate of elements in some components (rattles). Birds may also improve the efficacy of communication in noise by increasing usage of other signaling modalities. Red-winged blackbirds also perform a visual display in different intensities while singing. We also tested whether this species performs the visual display in different intensities according to current noise levels, and predicted that if the efficacy of songs is impaired in noisy places, males would compensate by performing a more intense visual display. For this, we also collected visual recordings from the same males from which we obtained acoustic recordings. We found no association between acoustic noise and the intensity of the visual display; thus, our results do not support the idea that males are using the visual display as a backup signal to communicate under acoustic noise. We discuss some possible explanations of this negative finding and for the observed noise-related changes in song length and rattle rate in the context of communication under noise
    corecore