14 research outputs found

    Four-dimensional light shaping: manipulating ultrafast spatio-temporal foci in space and time

    Full text link
    Spectral dispersion of ultrashort pulses allows simultaneous focusing of light in both space and time creating so-called spatio-temporal foci. Such space-time coupling may be combined with existing holographic techniques to give a further dimension of control when generating focal light fields. It is shown that a phase-only hologram placed in the pupil plane of an objective and illuminated by a spatially chirped ultrashort pulse can be used to generate three dimensional arrays of spatio-temporally focused spots. Exploiting the pulse front tilt generated at focus when applying simultaneous spatial and temporal focusing (SSTF), it is possible to overlap neighbouring foci in time to create a smooth intensity distribution. The resulting light field displays a high level of axial confinement, with experimental demonstrations given through two-photon microscopy and non-linear laser fabrication of glass

    Grain Structure Evolution of Al−Cu Alloys in Powder Bed Fusion with Laser Beam for Excellent Mechanical Properties

    Get PDF
    Powder Bed Fusion with Laser Beam of Metals (PBF-LB/M) is one of the fastest growing technology branches. More and more metallic alloys are being qualified, but processing of aluminum wrought alloys without cracks and defects is still challenging. It has already been shown that small parts with low residual porosity can be produced. However, suffering from microscopic hot cracks, the fracture behavior has been rather brittle. In this paper different combinations of temperature gradients and solidification rates are used to achieve specific solidification conditions in order to influence the resulting microstructure, as well as internal stresses. By this approach it could be shown that EN AW-2024, an aluminum-copper wrought alloy, is processable via PBF-LB/M fully dense and crack-free with outstanding material properties, exceeding those reported for commonly manufactured EN AW-2024 after T4 heat treatment

    High Speed Pump-Probe Apparatus for Observation of Transitional Effects in Ultrafast Laser Micromachining Processes

    No full text
    A pump-probe experimental approach has been shown to be a very efficient tool for the observation and analysis of various laser matter interaction effects. In those setups, synchronized laser pulses are used to create an event (pump) and to simultaneously observe it (probe). In general, the physical effects that can be investigated with such an apparatus are restricted by the temporal resolution of the probe pulse and the observation window. The latter can be greatly extended by adjusting the pump-probe time delay under the assumption that the interaction process remains fairly reproducible. Unfortunately, this assumption becomes invalid in the case of high-repetition-rate ultrafast laser material processing, where the irradiation history strongly affects the ongoing interaction process. In this contribution, the authors present an extension of the pump-probe setup that allows to investigate transitional and dynamic effects present during ultrafast laser machining performed at high pulse repetition frequencies

    Phosphoproteomics Profiling Defines a Target Landscape of the Basophilic Protein Kinases AKT, S6K, and RSK in Skeletal Myotubes

    Get PDF
    Phosphorylation-dependent signal transduction plays an important role in regulating the functions and fate of skeletal muscle cells. Central players in the phospho-signaling network are the protein kinases AKT, S6K, and RSK as part of the PI3K-AKT-mTOR-S6K and RAF-MEK-ERK-RSK pathways. However, despite their functional importance, knowledge about their specific targets is incomplete because these kinases share the same basophilic substrate motif RxRxxp[ST]. To address this, we performed a multifaceted quantitative phosphoproteomics study of skeletal myotubes following kinase inhibition. Our data corroborate a cross talk between AKT and RAF, a negative feedback loop of RSK on ERK, and a putative connection between RSK and PI3K signaling. Altogether, we report a kinase target landscape containing 49 so far unknown target sites. AKT, S6K, and RSK phosphorylate numerous proteins involved in muscle development, integrity, and functions, and signaling converges on factors that are central for the skeletal muscle cytoskeleton. Whereas AKT controls insulin signaling and impinges on GTPase signaling, nuclear signaling is characteristic for RSK. Our data further support a role of RSK in glucose metabolism. Shared targets have functions in RNA maturation, stability, and translation, which suggests that these basophilic kinases establish an intricate signaling network to orchestrate and regulate processes involved in translation
    corecore