85 research outputs found

    Association between the NBS1 E185Q polymorphism and cancer risk: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>NBS1 is a key DNA repair protein in the homologous recombination repair pathway and a signal modifier in the intra-S phase checkpoint that plays important roles in maintaining genomic stability. The <it>NBS1 </it>8360G>C (<it>Glu185Gln</it>) is one of the most commonly studied polymorphisms of the gene for their association with risk of cancers, but the results are conflicting.</p> <p>Methods</p> <p>We performed a meta-analysis using 16 eligible case-control studies (including 17 data sets) with a total of 9,734 patients and 10,325 controls to summarize the data on the association between the <it>NBS1 </it>8360G>C (E185Q) polymorphism and cancer risk.</p> <p>Results</p> <p>Compared with the common 8360GG genotype, the carriers of variant genotypes (i.e., 8360 GC/CC) had a 1.06-fold elevated risk of cancer (95% CI = 1.00–1.12, <it>P </it>= 0.05) in a dominant genetic model as estimated in a fixed effect model. However, the association was not found in an additive genetic model (CC <it>vs </it>GG) (odds ratio, OR = 0.98, 95% CI = 0.85–1.13, <it>P </it>= 0.78) nor in a recessive genetic model (CC <it>vs </it>GC +GG) (OR = 0.94, 95% CI = 0.82–1.07, <it>P </it>= 0.36). The effect of the 8360G>C (E185Q) polymorphism was further evaluated in stratification analysis. It was demonstrated that the increased risk of cancer associated with 8360G>C variant genotypes was more pronounced in the Caucasians (OR = 1.07, 95% CI = 1.01–1.14, <it>P </it>= 0.03).</p> <p>Conclusion</p> <p>Our meta-analysis suggests that the <it>NBS1 </it>E185Q variant genotypes (8360 <it>GC/CC</it>) might be associated with an increased risk of cancer, especially in Caucasians.</p

    Regulatory Polymorphisms in Human DBH Affect Peripheral Gene Expression and Sympathetic Activity

    Get PDF
    Dopamine β-hydroxylase (DBH) catalyzes the conversion of dopamine to norepinephrine in the CNS and peripherally. DBH variants are associated with large changes in circulating DBH and implicated in multiple disorders; yet causal relationships and tissue-specific effects remain unresolved

    Genome-wide linkage analysis of 1,233 prostate cancer pedigrees from the International Consortium for prostate cancer Genetics using novel sumLINK and sumLOD analyses

    Full text link
    BACKGROUND Prostate cancer (PC) is generally believed to have a strong inherited component, but the search for susceptibility genes has been hindered by the effects of genetic heterogeneity. The recently developed sumLINK and sumLOD statistics are powerful tools for linkage analysis in the presence of heterogeneity. METHODS We performed a secondary analysis of 1,233 PC pedigrees from the International Consortium for Prostate Cancer Genetics (ICPCG) using two novel statistics, the sumLINK and sumLOD. For both statistics, dominant and recessive genetic models were considered. False discovery rate (FDR) analysis was conducted to assess the effects of multiple testing. RESULTS Our analysis identified significant linkage evidence at chromosome 22q12, confirming previous findings by the initial conventional analyses of the same ICPCG data. Twelve other regions were identified with genome-wide suggestive evidence for linkage. Seven regions (1q23, 5q11, 5q35, 6p21, 8q12, 11q13, 20p11–q11) are near loci previously identified in the initial ICPCG pooled data analysis or the subset of aggressive PC pedigrees. Three other regions (1p12, 8p23, 19q13) confirm loci reported by others, and two (2p24, 6q27) are novel susceptibility loci. FDR testing indicates that over 70% of these results are likely true positive findings. Statistical recombinant mapping narrowed regions to an average of 9 cM. CONCLUSIONS Our results represent genomic regions with the greatest consistency of positive linkage evidence across a very large collection of high-risk PC pedigrees using new statistical tests that deal powerfully with heterogeneity. These regions are excellent candidates for further study to identify PC predisposition genes. Prostate 70: 735–744, 2010. © 2010 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71371/1/21106_ftp.pd

    Variations in the NBN/NBS1 gene and the risk of breast cancer in non-BRCA1/2 French Canadian families with high risk of breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Nijmegen Breakage Syndrome is a chromosomal instability disorder characterized by microcephaly, growth retardation, immunodeficiency, and increased frequency of cancers. Familial studies on relatives of these patients indicated that they also appear to be at increased risk of cancer.</p> <p>Methods</p> <p>In a candidate gene study aiming at identifying genetic determinants of breast cancer susceptibility, we undertook the full sequencing of the <it>NBN </it>gene in our cohort of 97 high-risk non-<it>BRCA1 </it>and -<it>BRCA2 </it>breast cancer families, along with 74 healthy unrelated controls, also from the French Canadian population. <it>In silico </it>programs (ESEfinder, NNSplice, Splice Site Finder and MatInspector) were used to assess the putative impact of the variants identified. The effect of the promoter variant was further studied by luciferase gene reporter assay in MCF-7, HEK293, HeLa and LNCaP cell lines.</p> <p>Results</p> <p>Twenty-four variants were identified in our case series and their frequency was further evaluated in healthy controls. The potentially deleterious p.Ile171Val variant was observed in one case only. The p.Arg215Trp variant, suggested to impair NBN binding to histone γ-H2AX, was observed in one breast cancer case and one healthy control. A promoter variant c.-242-110delAGTA displayed a significant variation in frequency between both sample sets. Luciferase reporter gene assay of the promoter construct bearing this variant did not suggest a variation of expression in the MCF-7 breast cancer cell line, but indicated a reduction of luciferase expression in both the HEK293 and LNCaP cell lines.</p> <p>Conclusion</p> <p>Our analysis of <it>NBN </it>sequence variations indicated that potential <it>NBN </it>alterations are present, albeit at a low frequency, in our cohort of high-risk breast cancer cases. Further analyses will be needed to fully ascertain the exact impact of those variants on breast cancer susceptibility, in particular for variants located in <it>NBN </it>promoter region.</p

    Chromosomes 4 and 8 implicated in a genome wide SNP linkage scan of 762 prostate cancer families collected by the ICPCG

    Full text link
    BACKGROUND In spite of intensive efforts, understanding of the genetic aspects of familial prostate cancer (PC) remains largely incomplete. In a previous microsatellite‐based linkage scan of 1,233 PC families, we identified suggestive evidence for linkage (i.e., LOD ≥ 1.86) at 5q12, 15q11, 17q21, 22q12, and two loci on 8p, with additional regions implicated in subsets of families defined by age at diagnosis, disease aggressiveness, or number of affected members. METHODS In an attempt to replicate these findings and increase linkage resolution, we used the Illumina 6000 SNP linkage panel to perform a genome‐wide linkage scan of an independent set of 762 multiplex PC families, collected by 11 International Consortium for Prostate Cancer Genetics (ICPCG) groups. RESULTS Of the regions identified previously, modest evidence of replication was observed only on the short arm of chromosome 8, where HLOD scores of 1.63 and 3.60 were observed in the complete set of families and families with young average age at diagnosis, respectively. The most significant linkage signals found in the complete set of families were observed across a broad, 37 cM interval on 4q13–25, with LOD scores ranging from 2.02 to 2.62, increasing to 4.50 in families with older average age at diagnosis. In families with multiple cases presenting with more aggressive disease, LOD scores over 3.0 were observed at 8q24 in the vicinity of previously identified common PC risk variants, as well as MYC , an important gene in PC biology. CONCLUSIONS These results will be useful in prioritizing future susceptibility gene discovery efforts in this common cancer. Prostate 72:410–426, 2012. © 2011 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90245/1/21443_ftp.pd

    Analysis of Xq27-28 linkage in the international consortium for prostate cancer genetics (ICPCG) families.

    Get PDF
    BACKGROUND: Genetic variants are likely to contribute to a portion of prostate cancer risk. Full elucidation of the genetic etiology of prostate cancer is difficult because of incomplete penetrance and genetic and phenotypic heterogeneity. Current evidence suggests that genetic linkage to prostate cancer has been found on several chromosomes including the X; however, identification of causative genes has been elusive. METHODS: Parametric and non-parametric linkage analyses were performed using 26 microsatellite markers in each of 11 groups of multiple-case prostate cancer families from the International Consortium for Prostate Cancer Genetics (ICPCG). Meta-analyses of the resultant family-specific linkage statistics across the entire 1,323 families and in several predefined subsets were then performed. RESULTS: Meta-analyses of linkage statistics resulted in a maximum parametric heterogeneity lod score (HLOD) of 1.28, and an allele-sharing lod score (LOD) of 2.0 in favor of linkage to Xq27-q28 at 138 cM. In subset analyses, families with average age at onset less than 65 years exhibited a maximum HLOD of 1.8 (at 138 cM) versus a maximum regional HLOD of only 0.32 in families with average age at onset of 65 years or older. Surprisingly, the subset of families with only 2-3 affected men and some evidence of male-to-male transmission of prostate cancer gave the strongest evidence of linkage to the region (HLOD = 3.24, 134 cM). For this subset, the HLOD was slightly increased (HLOD = 3.47 at 134 cM) when families used in the original published report of linkage to Xq27-28 were excluded. CONCLUSIONS: Although there was not strong support for linkage to the Xq27-28 region in the complete set of families, the subset of families with earlier age at onset exhibited more evidence of linkage than families with later onset of disease. A subset of families with 2-3 affected individuals and with some evidence of male to male disease transmission showed stronger linkage signals. Our results suggest that the genetic basis for prostate cancer in our families is much more complex than a single susceptibility locus on the X chromosome, and that future explorations of the Xq27-28 region should focus on the subset of families identified here with the strongest evidence of linkage to this region.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.3448Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.We thank all participants of all the studies included for enabling this research by their participation in these studies. Computer resources for this project have been provided by the high-performance computing centers of the University of Michigan and the University of Regensburg. Group-specific acknowledgments can be found in the Supplementary Note. The Center for Inherited Diseases Research (CIDR) Program contract number is HHSN268201200008I. This and the main consortium work were predominantly funded by 1X01HG006934-01 to G.R.A. and R01 EY022310 to J.L.H

    Understanding the Return of Genomic Sequencing Results Process: Content Review of Participant Summary Letters in the eMERGE Research Network

    Get PDF
    A challenge in returning genomic test results to research participants is how best to communicate complex and clinically nuanced findings to participants in a manner that is scalable to the large numbers of participants enrolled. The purpose of this study was to examine the features of genetic results letters produced at each Electronic Medical Records and Genomics (eMERGE3) Network site to assess their readability and content. Letters were collected from each site, and a qualitative analysis of letter content and a quantitative analysis of readability statistics were performed. Because letters were produced independently at each eMERGE site, significant heterogeneity in readability and content was found. The content of letters varied widely from a baseline of notifying participants that results existed to more detailed information about positive or negative results, as well as materials for sharing with family members. Most letters were significantly above the Centers for Disease Control-suggested reading level for health communication. While continued effort should be applied to make letters easier to understand, the ongoing challenge of explaining complex genomic information, the implications of negative test results, and the uncertainty that comes with some types of test and result makes simplifying letter text challenging

    Recombinant Haplotypes Narrow the ARMS2/HTRA1 Association Signal for Age-Related Macular Degeneration

    Get PDF
    Age-related macular degeneration (AMD) is the leading cause of blindness in ageing societies, triggered by both environmental and genetic factors. The strongest genetic signal for AMD with odds ratios of up to 2.8 per adverse allele was found previously over a chromosomal region in 10q26 harboring two genes, ARMS2 and HTRA1, although with little knowledge as to which gene or genetic variation is functionally relevant to AMD pathology. In this study, we analyzed rare recombinant haplotypes in 16,144 AMD cases and 17,832 controls from the International AMD Genomics Consortium and identified variants in ARMS2 but not HTRA1 to exclusively carry the AMD risk with P-values between 1.0 x 10(-773) and 6.7 x 10(-5). This now allows prioritization of the gene of interest for subsequent functional studies
    corecore