485 research outputs found

    How climate change affects extremes in maize and wheat yield in two cropping regions

    Get PDF
    Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 4653–4687, doi:10.1175/JCLI-D-13-00326.1.Downscaled climate model projections from phase 5 of the Coupled Model Intercomparison Project (CMIP5) were used to force a dynamic vegetation agricultural model (Agro-IBIS) and simulate yield responses to historical climate and two future emissions scenarios for maize in the U.S. Midwest and wheat in southeastern Australia. In addition to mean changes in yield, the frequency of high- and low-yield years was related to changing local hydroclimatic conditions. Particular emphasis was on the seasonal cycle of climatic variables during extreme-yield years and links to crop growth. While historically high (low) yields in Iowa tend to occur during years with anomalous wet (dry) growing season, this is exacerbated in the future. By the end of the twenty-first century, the multimodel mean (MMM) of growing season temperatures in Iowa is projected to increase by more than 5°C, and maize yield is projected to decrease by 18%. For southeastern Australia, the frequency of low-yield years rises dramatically in the twenty-first century because of significant projected drying during the growing season. By the late twenty-first century, MMM growing season precipitation in southeastern Australia is projected to decrease by 15%, temperatures are projected to increase by 2.8°–4.5°C, and wheat yields are projected to decline by 70%. Results highlight the sensitivity of yield projections to the nature of hydroclimatic changes. Where future changes are uncertain, the sign of the yield change simulated by Agro-IBIS is uncertain as well. In contrast, broad agreement in projected drying over southern Australia across models is reflected in consistent yield decreases for the twenty-first century. Climatic changes of the order projected can be expected to pose serious challenges for continued staple grain production in some current centers of production, especially in marginal areas.This work was initiated at the Dissertations Initiative for the Advancement of Climate Change Research (DISCCRS) V Symposium, supported by the U.S. National Science Foundation through collaborative Grants SES-0932916 and SES-0931402. CCU was supported by a University of New South Wales Vice-Chancellor Fellowship and the Penzance Endowed Fund and John P. Chase Memorial Endowed Fund at WHOI. TET was supported by the U.S. Department of Energy Award DE-EE0004397. NC was funded by NSF Grant EAR-1204774. We are indebted to the FORMAS-funded Land Use Today and Tomorrow (LUsTT) project (Grant 211-2009-1682) for financial support

    The response of coarse root biomass to long-term CO2 enrichment and nitrogen application in a maturing Pinus taeda stand with a large broadleaved component

    Get PDF
    Elevated atmospheric CO2 (eCO(2)) typically increases aboveground growth in both growth chamber and free-air carbon enrichment (FACE) studies. Here we report on the impacts of eCO(2) and nitrogen amendment on coarse root biomass and net primary productivity (NPP) at the Duke FACE study, where half of the eight plots in a 30-year-old loblolly pine (Pinus taeda, L.) plantation, including competing naturally regenerated broadleaved species, were subjected to eCO(2) (ambient, aCO(2) plus 200 ppm) for 15-17 years, combined with annual nitrogen amendments (11.2 g N m(-2)) for 6 years. Allometric equations were developed following harvest to estimate coarse root (>2 mm diameter) biomass. Pine root biomass under eCO(2) increased 32%, 1.80 kg m(-2) above the 5.66 kg m(-2) observed in aCO(2), largely accumulating in the top 30 cm of soil. In contrast, eCO(2) increased broadleaved root biomass more than twofold (aCO(2): 0.81, eCO(2): 2.07 kg m(-2)), primarily accumulating in the 30-60 cm soil depth. Combined, pine and broadleaved root biomass increased 3.08 kg m(-2) over aCO(2) of 6.46 kg m(-2), a 48% increase. Elevated CO2 did not increase pine root:shoot ratio (average 0.24) but increased the ratio from 0.57 to 1.12 in broadleaved species. Averaged over the study (1997-2010), eCO(2) increased pine, broadleaved and total coarse root NPP by 49%, 373% and 86% respectively. Nitrogen amendment had smaller effects on any component, singly or interacting with eCO(2). A sustained increase in root NPP under eCO(2) over the study period indicates that soil nutrients were sufficient to maintain root growth response to eCO(2). These responses must be considered in computing coarse root carbon sequestration of the extensive southern pine and similar forests, and in modelling the responses of coarse root biomass of pine-broadleaved forests to CO2 concentration over a range of soil N availability.Peer reviewe

    Helimeric porphyrinoids: Stereostructure and chiral resolution of meso -tetraarylmorpholinochlorins

    Get PDF
    The synthesis and chiral resolution of free-base and Ni(II) complexes of a number of derivatives of meso-tetraphenylmorpholinochlorins, with and without direct β-carbon-to-o-phenyl linkages to the flanking phenyl groups, is described. The morpholinochlorins, a class of stable chlorin analogues, were synthesized in two to three steps from meso-tetraphenylporphyrin. The conformations and the relative stereostructures of a variety of free-base and Ni(II) complexes of these morpholinochlorins were elucidated by X-ray diffractometry. Steric and stereoelectronic arguments explain the relative stereoarray of the morpholino-substituents, which differ in the free-base and Ni(II) complexes, and in the monoalkoxy, β-carbon-to-o-phenyl linked morpholinochlorins, and the dialkoxy derivatives. The Ni(II) complexes were all found to be severely ruffled whereas the free-base chromophores are more planar. As a result of the helimeric distortion of their porphyrinoid chromophores, the ruffled macrocycles possess a stable inherent element of chirality. Most significantly, resolution of the racemic mixtures was achieved, both by classical methods via diastereomers and by HPLC on a chiral phase. Full CD spectra were recorded and modeled using quantum-chemical computational methods, permitting, for the first time, an assignment of the absolute configurations of the chromophores. The report expands the range of known pyrrole-modified porphyrins. Beyond this, it introduces large chiral porphyrinoid π-systems that exist in the form of two enantiomeric, stereochemically stable helimers that can be resolved. This forms the basis for possible future applications, for example, in molecular-recognition systems or in materials with chiroptic properties. © 2011 American Chemical Society

    The Psychological Science Accelerator: Advancing Psychology through a Distributed Collaborative Network

    Get PDF
    Concerns have been growing about the veracity of psychological research. Many findings in psychological science are based on studies with insufficient statistical power and nonrepresentative samples, or may otherwise be limited to specific, ungeneralizable settings or populations. Crowdsourced research, a type of large-scale collaboration in which one or more research projects are conducted across multiple lab sites, offers a pragmatic solution to these and other current methodological challenges. The Psychological Science Accelerator (PSA) is a distributed network of laboratories designed to enable and support crowdsourced research projects. These projects can focus on novel research questions, or attempt to replicate prior research, in large, diverse samples. The PSA’s mission is to accelerate the accumulation of reliable and generalizable evidence in psychological science. Here, we describe the background, structure, principles, procedures, benefits, and challenges of the PSA. In contrast to other crowdsourced research networks, the PSA is ongoing (as opposed to time-limited), efficient (in terms of re-using structures and principles for different projects), decentralized, diverse (in terms of participants and researchers), and inclusive (of proposals, contributions, and other relevant input from anyone inside or outside of the network). The PSA and other approaches to crowdsourced psychological science will advance our understanding of mental processes and behaviors by enabling rigorous research and systematically examining its generalizability

    Counts-in-Cylinders in the Sloan Digital Sky Survey with Comparisons to N-body Simulations

    Full text link
    Environmental statistics provide a necessary means of comparing the properties of galaxies in different environments and a vital test of models of galaxy formation within the prevailing, hierarchical cosmological model. We explore counts-in-cylinders, a common statistic defined as the number of companions of a particular galaxy found within a given projected radius and redshift interval. Galaxy distributions with the same two-point correlation functions do not necessarily have the same companion count distributions. We use this statistic to examine the environments of galaxies in the Sloan Digital Sky Survey, Data Release 4. We also make preliminary comparisons to four models for the spatial distributions of galaxies, based on N-body simulations, and data from SDSS DR4 to study the utility of the counts-in-cylinders statistic. There is a very large scatter between the number of companions a galaxy has and the mass of its parent dark matter halo and the halo occupation, limiting the utility of this statistic for certain kinds of environmental studies. We also show that prevalent, empirical models of galaxy clustering that match observed two- and three-point clustering statistics well fail to reproduce some aspects of the observed distribution of counts-in-cylinders on 1, 3 and 6-Mpc/h scales. All models that we explore underpredict the fraction of galaxies with few or no companions in 3 and 6-Mpc/h cylinders. Roughly 7% of galaxies in the real universe are significantly more isolated within a 6 Mpc/h cylinder than the galaxies in any of the models we use. Simple, phenomenological models that map galaxies to dark matter halos fail to reproduce high-order clustering statistics in low-density environments.Comment: 17 pages, 10 figures. Accepted, Ap

    The role of the genetic counsellor: a systematic review of research evidence

    Get PDF
    In Europe, genetic counsellors are employed in specialist genetic centres or other specialist units. According to the European Board of Medical Genetics, the genetic counsellor must fulfil a range of roles, including provision of information and facilitation of psychosocial adjustment of the client to their genetic status and situation. To evaluate the extent to which genetic counsellors fulfil their prescribed roles, we conducted a systematic review of the published relevant scientific evidence. We searched five relevant electronic databases (Medline, CINAHL, SocIndex, AMED and PsychInfo) using relevant search terms and handsearched four subject-specific journals for research-based papers published in English between 1 January 2000 and 30 June 2013. Of 419 potential papers identified initially, seven satisfied the inclusion criteria for the review. Themes derived from the thematic analysis of the data were: (i) rationale for genetic counsellors to provide care, (ii) appropriate roles and responsibilities and (iii) the types of conditions included in the genetic counsellor caseload. The findings of this systematic review indicate that where genetic counsellors are utilised in specialist genetic settings, they undertake a significant workload associated with direct patient care and this appears to be acceptable to patients. With the burden on genetic services, there is an argument for the increased use of genetic counsellors in countries where they are under-utilised. In addition, roles undertaken by genetic counsellors in specialist genetic settings could be adapted to integrate genetic counsellors into multi-disciplinary teams in other specialisms

    Energy, water, and carbon fluxes in a loblolly pine stand: Results from uniform and gappy canopy models with comparisons to eddy flux data

    Get PDF
    1] This study investigates the impacts of canopy structure specification on modeling net radiation (R n), latent heat flux (LE) and net photosynthesis (A n) by coupling two contrasting radiation transfer models with a two-leaf photosynthesis model for a maturing loblolly pine stand near Durham, North Carolina, USA. The first radiation transfer model is based on a uniform canopy representation (UCR) that assumes leaves are randomly distributed within the canopy, and the second radiation transfer model is based on a gappy canopy representation (GCR) in which leaves are clumped into individual crowns, thereby forming gaps between the crowns. To isolate the effects of canopy structure on model results, we used identical model parameters taken from the literature for both models. Canopy structure has great impact on energy distribution between the canopy and the forest floor. Comparing the model results, UCR produced lower R n , higher LE and higher A n than GCR. UCR intercepted more shortwave radiation inside the canopy, thus producing less radiation absorption on the forest floor and in turn lower R n . There is a higher degree of nonlinearity between A n estimated by UCR and by GCR than for LE. Most of the difference for LE and A n between UCR and GCR occurred around noon, when gaps between crowns can be seen from the direction of the incident sunbeam. Comparing with eddy-covariance measurements in the same loblolly pine stand from May to September 2001, based on several measures GCR provided more accurate estimates for R n , LE and A n than UCR. The improvements when using GCR were much clearer when comparing the daytime trend of LE and A n for the growing season. Sensitivity analysis showed that UCR produces higher LE and A n estimates than GCR for canopy cover ranging from 0.2 to 0.8. There is a high degree of nonlinearity in the relationship between UCR estimates for A n and those of GCR, particularly when canopy cover is low, and suggests that simple scaling of UCR parameters cannot compensate for differences between the two models. LE from UCR and GCR is also nonlinearly related when canopy cover is low, but the nonlinearity quickly disappears as canopy cover increases, such that LE from UCR and GCR are linearly related and the relationship becomes stronger as canopy cover increases. These results suggest the uniform canopy assumption can lead to underestimation of R n , and overestimation of LE and A n . Given the potential in mapping regional scale forest canopy structure with high spatial resolution optical and Lidar remote sensing plotforms, it is possible to use GCR for up-scaling ecosystem processes from flux tower measurements to heterogeneous landscapes, provided the heterogeneity is not too extreme to modify the flow dynamics., Energy, water, and carbon fluxes in a loblolly pine stand: Results from uniform and gappy canopy models with comparisons to eddy flux data, J. Geophys. Res., 114, G04021, doi:10.1029/2009JG000951

    The N2K Consortium. III. Short-Period Planets Orbiting HD 149143 and HD 109749

    Get PDF
    We report the detection of two short-period planets discovered at Keck Observatory. HD 149143 is a metal-rich G0 IV star with a planet of M sin i = 1.33M_J and an orbital radius of 0.053 AU. The best-fit Keplerian model has an orbital period, P = 4.072 days, semivelocity amplitude, K = 149.6 m s^(-1), and eccentricity, e = 0.016 ± 0.01. The host star is chromospherically inactive and metal-rich, with [Fe/H] = 0.26. Based on the T_(eff) and stellar luminosity, we derive a stellar radius of 1.49 R_☉. Photometric observations of HD 149143 were carried out using the automated photometric telescopes at Fairborn Observatory. HD 149143 is photometrically constant over the radial velocity period to 0.0003 ± 0.0002 mag, supporting the existence of the planetary companion. No transits were detected down to a photometric limit of approximately 0.02%, eliminating transiting planets with a variety of compositions and constraining the orbital inclination to less than 83°. A short-period planet was also detected around HD 109749, a G3 IV star. HD 109749 is chromospherically inactive, with [Fe/H] = 0.25 and a stellar radius of 1.24. The radial velocities for HD 109749 are modeled by a Keplerian with P = 5.24 days and K = 28.7 m s^(-1). The inferred planet mass is M sin i = 0.28M_J and the semimajor axis of this orbit is 0.0635 AU. Photometry of HD 109749 was obtained with the SMARTS consortium telescope, the PROMPT telescope, and by transitsearch.org observers in Adelaide and Pretoria. These observations did not detect a decrement in the brightness of the host star at the predicted ephemeris time, and they constrain the orbital inclination to less than 85° for gas giant planets with radii down to 0.7R_J
    • …
    corecore