104 research outputs found

    p120-Catenin Down-Regulation and Epidermal Growth Factor Receptor Overexpression Results in a Transformed Epithelium That Mimics Esophageal Squamous Cell Carcinoma

    Get PDF
    Esophageal squamous cell carcinoma (ESCC) is an aggressive malignancy with a poor prognosis due to its highly invasive and metastatic potential. The molecular pathogenesis underlying the invasive mechanism of ESCC is not well known because of the lack of existing models to study this disease. p120-Catenin (p120ctn) and the epidermal growth factor receptor (EGFR) have each been implicated in several cancers, including ESCC. p120ctn is down-regulated in 60% of ESCC tumors, whereas EGFR is the most commonly overexpressed oncogene in ESCC. For these reasons, we investigated the cooperation between p120ctn and EGFR and its effect on ESCC invasion. We show that p120ctn down-regulation is commonly associated with EGFR overexpression. By using a three-dimensional culture system, we demonstrate that the inverse relationship between p120ctn and EGFR has biological implications. Specifically, p120ctn down-regulation coupled with EGFR overexpression in human esophageal keratinocytes (EPC1-PE) was required to promote invasion. Morphological comparison of EPC1-PE cells grown in three-dimensional culture and human ESCC revealed identical features, including significantly increased cellularity, nuclear grade, and proliferation. Molecular characteristics were measured by keratin expression patterns, which were nearly identical between EPC1-PE cells in three-dimensional culture and ESCC samples. Altogether, our analyses have demonstrated that p120ctn down-regulation and EGFR overexpression are able to mimic human ESCC in a relevant three-dimensional culture model

    Using Positive Deviance for Determining Successful Weight- Control Practices

    Get PDF
    Based on positive deviance (examining the practices of successful individuals), we identified five primary themes from 36 strategies that help to maintain long-term weight loss (weight control) in 61 people. We conducted in-depth interviews to determine what successful individuals did and/or thought about regularly to control their weight. The themes included weight-control practices related to (a) nutrition: increase water, fruit, and vegetable intake, and consistent meal timing and content; (b) physical activity: follow and track an exercise routine at least 3×/week; (c) restraint: practice restraint by limiting and/or avoiding unhealthy foods; (d) self-monitor: plan meals, and track calories/weight progress; and (e) motivation: participate in motivational programs and cognitive processes that affect weight-control behavior. Using the extensive data involving both the practices and practice implementation, we used positive deviance to create a comprehensive list of practices to develop interventions for individuals to control their weight

    Single-Nucleotide Polymorphisms and Markers of Oxidative Stress in Healthy Women

    Full text link
    Purpose There is accumulating evidence that oxidative stress is an important contributor to carcinogenesis. We hypothesized that genetic variation in genes involved in maintaining antioxidant/ oxidant balance would be associated with overall oxidative stress. Methods We examined associations between single nucleotide polymorphisms (SNPs) in MnSOD, GSTP1, GSTM1, GPX1, GPX3, and CAT genes and thiobarbituric acid-reactive substances (TBARS), a blood biomarker of oxidative damage, in healthy white women randomly selected from Western New York (n = 1402). We used general linear models to calculate age-adjusted geometric means of TBARS across the variants. We also examined the associations within strata of menopausal status. Results For MnSOD, being heterozygous was associated with lower geometric means of TBARS (less oxidative stress), 1.28 mg/dL, compared to homozygous T-allele or homozygous Callele, 1.35 mg/dL, and 1.31 mg/dL correspondingly (p for trend = 0.01). This difference remained among postmenopausal women, 1.40 mg/dL for TT, 1.32 mg/dL for TC, and 1.34mg/dL for CC (p for trend 0.015); it was attenuated among premenopausal women. SNPs in the other genes examined (GSTP1, GSTM1, GPX1, GPX3, and CAT) were not associated with TBARS. Conclusions Our findings suggest that genetic variation in MnSOD gene may be associated with oxidative status, particularly among postmenopausal women

    RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity

    Get PDF
    The field of molecular ecology is transitioning from the use of small panels of classical genetic markers such as microsatellites to much larger panels of single nucleotide polymorphisms (SNPs) generated by approaches like RAD sequencing. However, few empirical studies have directly compared the ability of these methods to resolve population structure. This could have implications for understanding phenotypic plasticity, as many previous studies of natural populations may have lacked the power to detect genetic differences, especially over micro-geographic scales. We therefore compared the ability of microsatellites and RAD sequencing to resolve fine-scale population structure in a commercially important benthic invertebrate by genotyping great scallops (Pecten maximus) from nine populations around Northern Ireland at 13 microsatellites and 10 539 SNPs. The shells were then subjected to morphometric and colour analysis in order to compare patterns of phenotypic and genetic variation. We found that RAD sequencing was superior at resolving population structure, yielding higher Fst values and support for two distinct genetic clusters, whereas only one cluster could be detected in a Bayesian analysis of the microsatellite dataset. Furthermore, appreciable phenotypic variation was observed in size-independent shell shape and coloration, including among localities that could not be distinguished from one another genetically, providing support for the notion that these traits are phenotypically plastic. Taken together, our results suggest that RAD sequencing is a powerful approach for studying population structure and phenotypic plasticity in natural populations

    Atmospheric observation-based estimation of fossil fuel CO_2 emissions from regions of central and southern California

    Get PDF
    Combustion of fossil fuel is the dominant source of greenhouse gas emissions to the atmosphere in California. Here, we describe radiocarbon (^(14)CO_2) measurements and atmospheric inverse modeling to estimate fossil fuel CO_2 (ffCO_2) emissions for 2009–2012 from a site in central California, and for June 2013–May 2014 from two sites in southern California. A priori predicted ffCO_2 mixing ratios are computed based on regional atmospheric transport model (WRF-STILT) footprints and an hourly ffCO_2 prior emission map (Vulcan 2.2). Regional inversions using observations from the central California site suggest that emissions from the San Francisco Bay Area (SFBA) are higher in winter and lower in summer. Taking all years together, the average of a total of fifteen 3-month inversions from 2009 to 2012 suggests ffCO_2 emissions from SFBA were within 6 ± 35% of the a priori estimate for that region, where posterior emission uncertainties are reported as 95% confidence intervals. Results for four 3-month inversions using measurements in Los Angeles South Coast Air Basin (SoCAB) during June 2013–May 2014 suggest that emissions in SoCAB are within 13 ± 28% of the a priori estimate for that region, with marginal detection of any seasonality. While emissions from the SFBA and SoCAB urban regions (containing ~50% of prior emissions from California) are constrained by the observations, emissions from the remaining regions are less constrained, suggesting that additional observations will be valuable to more accurately estimate total ffCO_2 emissions from California as a whole

    The intronic G13964C variant in p53 is not a high-risk mutation in familial breast cancer in Australia

    Get PDF
    BACKGROUND: Mutations in BRCA1 and BRCA2 account for approximately 50% of breast cancer families with more than four affected cases, whereas exonic mutations in p53, PTEN, CHK2 and ATM may account for a very small proportion. It was recently reported that an intronic variant of p53 - G13964C - occurred in three out of 42 (7.1%) 'hereditary' breast cancer patients, but not in any of 171 'sporadic' breast cancer control individuals (P = 0.0003). If this relatively frequent occurrence of G13964C in familial breast cancer and absence in control individuals were confirmed, then this would suggest that the G13964C variant plays a role in breast cancer susceptibility. METHOD: We genotyped 71 familial breast cancer patients and 143 control individuals for the G13964C variant using polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) analysis. RESULTS: Three (4.2%; 95% confidence interval [CI] 0–8.9%) G13964C heterozygotes were identified. The variant was also identified in 5 out of 143 (3.5%; 95% CI 0.6–6.4%) control individuals without breast cancer or a family history of breast cancer, however, which is no different to the proportion found in familial cases (P = 0.9). CONCLUSION: The present study would have had 80% power to detect an odds ratio of 4.4, and we therefore conclude that the G13946C polymorphism is not a 'high-risk' mutation for familial breast cancer

    Atmospheric observation-based estimation of fossil fuel CO_2 emissions from regions of central and southern California

    Get PDF
    Combustion of fossil fuel is the dominant source of greenhouse gas emissions to the atmosphere in California. Here, we describe radiocarbon (^(14)CO_2) measurements and atmospheric inverse modeling to estimate fossil fuel CO_2 (ffCO_2) emissions for 2009–2012 from a site in central California, and for June 2013–May 2014 from two sites in southern California. A priori predicted ffCO_2 mixing ratios are computed based on regional atmospheric transport model (WRF-STILT) footprints and an hourly ffCO_2 prior emission map (Vulcan 2.2). Regional inversions using observations from the central California site suggest that emissions from the San Francisco Bay Area (SFBA) are higher in winter and lower in summer. Taking all years together, the average of a total of fifteen 3-month inversions from 2009 to 2012 suggests ffCO_2 emissions from SFBA were within 6 ± 35% of the a priori estimate for that region, where posterior emission uncertainties are reported as 95% confidence intervals. Results for four 3-month inversions using measurements in Los Angeles South Coast Air Basin (SoCAB) during June 2013–May 2014 suggest that emissions in SoCAB are within 13 ± 28% of the a priori estimate for that region, with marginal detection of any seasonality. While emissions from the SFBA and SoCAB urban regions (containing ~50% of prior emissions from California) are constrained by the observations, emissions from the remaining regions are less constrained, suggesting that additional observations will be valuable to more accurately estimate total ffCO_2 emissions from California as a whole

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
    • …
    corecore