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Key Points:  

 Atmospheric fossil CO2 enhancements estimated using 14CO2 in central and southern California 

 Inversions suggest emissions within 10 ± ~ 30 % (at 95% confidence) of CARB inventory 

 Seasonal variations detected in the San Francisco Bay Area but not southern California 

 Inter-annual variation or trend is not significant in SFBA 

 Additional observations are needed to refine these estimates   
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Abbreviations  

 
13CO2      Carbon-13C dioxide 
14CO2     Radiocarbon dioxide 

CA     California 

CARB     California Air Resources Board 

CIT     California Institute of Technology 

CEM     Cement production 

COM      Commercial 

CO2     Carbon dioxide 

EDGAR     Emission Database for Global Atmospheric Research  

ffCO2     Fossil fuel CO2 

GHGs     greenhouse gases 

IND     Industrial  

IPCC     Intergovernmental Panel on Climate Change 

LSM     Land surface model 

MOB      On-road mobile  

MYNN2    Mellor–Yamada Nakanishi Niino 2 

NOAA     National Oceanic and Atmospheric Administration 

NOM      Non-road mobile 

PBL     Planetary boundary layer 

PG&E     Pacific Gas and Electric 

PST     Pacific Standard Time 

SBC      San Bernardino 

SFBA     San Francisco bay area 

SFBI     Scaling factor Bayesian inversion 

SoCAB     South coast air basin 

STILT     Stochastic Time-Inverted Lagrangian Transport 

UN     United Nations 

US     United States 

UTC     Coordinated Universal Time 

UTL      Power production 

RES      Residential 

RMS     Root mean square 

RMSE     Root mean square error 

WRF     Weather Research and Forecasting 

WGC      Walnut Grove  

YSU     Yonsei University 
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Abstract 

 Combustion of fossil fuel is the dominant source of greenhouse gas emissions to the atmosphere 

from California. Here, we describe radiocarbon (14CO2) measurements and atmospheric inverse 

modeling to estimate fossil fuel CO2 (ffCO2) emissions for 2009 - 2012 from a site in central California, 

and for June 2013 - May 2014 from two sites in southern California. A priori predicted ffCO2 mixing 

ratios are computed based on regional atmospheric transport model (WRF-STILT) footprints and an 

hourly ffCO2 prior emission map (Vulcan 2.2). Regional inversions using observations from the central 

California site suggest that emissions from the San Francisco Bay Area (SFBA) are higher in winter 

and lower in summer. Taking all years together, the average of a total of fifteen 3-month inversions 

from 2009 - 2012 suggests ffCO2 emission from SFBA was within 6 ± 35% of the a priori estimate for 

that region, where posterior emission uncertainties are reported as 95% confidence intervals. Results 

for four 3-month inversions using measurements in Los Angeles South Coast Air Basin (SoCAB) 

during June 2013 - May 2014 suggest that emissions in SoCAB are within 13 ± 28% of the a priori 

estimate for that region, with marginal detection of any seasonality. While emissions from the SFBA 

and SoCAB urban regions (containing ~ 50% of prior emissions from California) are constrained by 

the observations, emissions from the remaining regions are less constrained, suggesting that additional 

observations will be valuable to more accurately estimate total ffCO2 emissions from California as a 

whole. 

 

1 Introduction 

 Fossil fuel combustion is currently the main source of increasing atmospheric CO2, driving 

changes in Earth’s radiative balance, increasing surface temperatures and threatening the stability of the 

ecosystem services the Earth provides (IPCC, 2013). Global average CO2 concentration has increased 

about 40% from the level of 278±2 ppm at 1750 to over 400 ppm in recent years (Etheridge et al., 1996; 
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NOAA, 2018). Emissions in urban regions contribute ~70% of the total global fossil fuel CO2 (ffCO2) 

emissions (UN, 2016). In California, ffCO2 emissions in San Francisco Bay Area (SFBA) and South 

Coast Air Basin (SoCAB) are about half of the state’s total ffCO2 emission (Gurney et al., 2009). In 

2006, California enacted legislation designed to reduce greenhouse gas emissions (Legislative 

Information, 2006), so it is important to assess ffCO2 emissions over time to verify those target 

reductions are occurring with more temporal and spatial observations. 

 

 Emission of ffCO2, as well as other greenhouse gases (GHGs), can be estimated by both the 

‘bottom-up’ and ‘top-down’ methods. The bottom-up inventories determine the fossil fuel emissions 

using data on fuel use, emitting activities, locations of power plants and spatial proxies (Gurney et al., 

2009 and Gurney et al., 2012). However, bottom-up estimates may be limited by incomplete 

knowledge of processes that contribute to GHGs emissions. The ‘top-down’ method of atmospheric 

inversion uses bottom-up emission estimates of GHGs in conjunction with atmospheric observations 

and meteorological Lagrangian transport models to estimate GHG emissions (e.g., Gerbig et al., 2003). 

Top-down methods have not yet been widely used for ffCO2, however. 

 

 The State of California estimates emissions using bottom-up activity data including fuel sales 

and other data (CARB, 2016). As part of efforts to control emissions, it is valuable to independently 

evaluate the emission inventories using atmospheric measurements. Recent work has examined 

regional ffCO2 emissions from California for short periods (e.g. Turnbull et al., 2011; Pataki et al., 2003; 

Newman et al., 2013; Brioude et al. 2012), and methods are being developed to monitor urban systems 

(Kort et al., 2013; Turnbull et al., 2015) as well as larger regions (Levin et al., 2008; Basu et al., 2016; 

Fischer et al. 2017; Graven et al., 2018). Graven et al., 2018 estimated ffCO2 emissions across 

California using multiple towers, including the three we use here, for three one-month periods in 2014-
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15 and found that estimated emissions were consistent with those reported by the State of California. 

To our knowledge, there have not been estimates of ffCO2 emissions over urban regions of SFBA and 

SoCAB using inversion modeling covering complete, continuous, annual timescales.  

 

 In this paper, we will describe atmospheric observation-based estimates of ffCO2 emissions for 

SFBA and SoCAB, the two dominant major urban (and emitting) regions of California as shown in 

Figure 1, which will make use of the four-year (2009-2012) tower-based observation data in SFBA and 

one-year data (2013-2014) to assess the annual and seasonal trend in SFBA and seasonal trend in 

SoCAB. In the methods section, we describe measurements of atmospheric 14CO2 at three California 

sites, their use to estimate ffCO2 enhancements, prediction of expected ffCO2 enhancements using a 

priori emission maps and atmospheric transport models, and estimation of posterior ffCO2 emissions 

via Bayesian inversion. In the results, we report results for estimated ffCO2 enhancements, and 

estimated annual and seasonal ffCO2 emissions for SFBA and SoCAB. We then compare annual mean 

emissions with California’s reported ffCO2 emissions. 

 

2 Methods 

2.1 Air sampling and 14CO2 measurements 

 Air was collected in flasks at one site in central California (WGC (Walnut Grove): 38.27°N, 

121.49°W) and two sites in southern California (CIT (California Institute of Technology in Pasadena): 

34.14°N, 118.12°W and SBC (San Bernardino): 34.09°N, 117.31°W) (see Figure 1 for site locations 

and definition of the regions used for the inversions). Data from subsets of these sites have been used 

for previous regional estimates of methane (Jeong et al., 2012a; 2013; 2016; 2017) nitrous oxide (Jeong 

et al., 2012b; Jeong et al., 2018), and ffCO2 emissions in California (Graven et al., 2018), and to 

investigate ffCO2 in Southern California (Newman et al., 2013; 2016). In the current study, air 
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sampling methods and analysis differed slightly among the different sites. For WGC, air samples were 

collected using automated flask packages as part of the NOAA Global Greenhouse Gas Reference 

Network (Andrews et al., 2014). Air was collected into flow-through flasks for approximately 2 

minutes at 1400 PST (2200 UTC) approximately every 2-3 days from 91 m above the ground after 

passing through a water trap at 5°C. At CIT, the air was collected on alternate days at ~10 m elevation 

above ground for approximately 1 minute at 1400 PST into evacuated one-liter Pyrex flasks after 

passing through Mg(ClO4)2 to dry the samples. At SBC, air samples were collected at a height of 58 m 

above ground every three days from 1400 - 1500 PST in 1-hr averages by varying the flow through 2-

liter flasks after passing through a water trap at 5°C.  

 

 Air samples from WGC were sent to the NOAA Earth System Research Laboratory for 

measurement of total CO2, 
13CO2 and other stable greenhouse gases and reactive species not used in 

this study. CO2 and 13C were measured with precision at or better than 0.1 ppm and 0.01 ‰, 

respectively (Andrews et al., 2014). CO2 samples collected by approximately 2-3 days were extracted 

and graphitized at the University of Colorado (Turnbull et al., 2007). Δ14C was analyzed by accelerator 

mass spectrometer at the Keck-CCMAS facility at the University of California, Irvine, using the 

methods described in Newman et al., 2013 and Xu et al., 2007. For the CIT and SBC samples, CO2 was 

extracted from the air samples cryogenically, and analyzed following the methods described in 

Newman et al., 2008. Individual flask samples were analyzed for Δ14C weekly for SBC and bi-weekly 

for CIT by accelerator mass spectrometer at the Keck-CCMAS facility at the University of California, 

Irvine as well. Uncertainty in measured CO2 concentrations at both CIT and SBC sites averages ± 1.4 

ppm and 13C ± 0.15‰, where the large uncertainty in CO2 is dominated by manometry with smaller 

contributions from extraction and mass spectrometry. Uncertainty for Δ14C is 2‰, based on the long-
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term reproducibility of secondary standards (Newman et al., 2013). 

 

2.2 Estimation of atmospheric fossil fuel CO2  

Local enhancements (above background) of atmospheric CO2 due to fossil fuel combustion 

were computed using a mass balance between local and background measurements of CO2 using Δ14C 

(e.g., Miller et al., 2012; Turnbull et al., 2006) according to: 

 

Cobs = Cbg + ffCO2 + Cr - Cp    (1) 

  

ΔobsCobs = ΔbgCbg + ΔffffCO2 + ΔrCr - ΔpCp                                      (2) 

 

where C is the mixing ratio of CO2, Δ is the Δ14CO2, obs is a local observation, bg is 

background, ff is fossil fuel component, p is net primary productivity and r is heterotrophic respiration, 

respectively. The impacts of air-sea fluxes, nuclear emissions and other types of biofuel combustion 

such as wood on Δ14CO2 are small as reported in Graven et al., 2018 and ignored as well in this study. 

Solving the above equation for ffCO2, with the assumption that Δp = Δbg, yields 

 

   

bgff

bgrr

bgff

bgobsobs CC
=ffCO









2      (3) 

 

In the following work, we estimate Cbg and bg from smoothed records of Pt. Barrow, AK 

(Newman et al., 2016) since it has the data available in the study period. Measurements of Δ14CO2 were 

similar to clean air sampled at La Jolla, CA in 1999-2007 (Graven et al., 2012; Newman et al., 2016) 

and the difference in calculated ffCO2 at CIT using La Jolla or Barrow data was very small (~1%) 
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(Newman et al., 2016). Raw radiocarbon data for WGC are compared to smoothed background results 

from Pt. Barrow in Figure 2 top. ff is -1000 per mil for fossil fuel because fossil fuels are assumed not 

to contain any 14C due to decay of this short-lived radionuclide after millions of year (Newman et al., 

2016). Because r is similar to bg as compared with ff, the 2nd term in Equation 3 is assumed to 

follow a sinusoid with a small amplitude that varies with site following the approach described by 

Turnbull et al., 2006. We approximated the respiration term to vary from -0.2 ppm in winter to -0.5 

ppm in summer for WGC (Turnbull et al., 2011; Fischer et al., 2017). Observations of Δ14C and ffCO2 

at WGC are shown in Figure 2 for the period from March 2009 – November 2012. ffCO2 mixing ratios 

for WGC for the 2009-2012 study period are show in Figure 2 bottom. For CIT and SBC, where 

respiration is smaller and fossil fuel 14C depletion of respired biomass CO2 is likely greater, we used 

0.06 in winter) to 0.11 ppm in summer following Newman et al., 2016. For comparison with Graven et 

al., 2018, respiration corrections of magnitude 0.1 – 0.8 ppm at WGC and 0.0 – 0.5 ppm at CIT and 

SBC were calculated by simulating Cr using a biosphere model and atmospheric transport model, and 

using recent observations of r. While these more recent estimates are larger than our estimates of the 

respiration correction, the differences are small compared to the estimated ffCO2 shown in Figure 2. 

 

2.3 Prior emission maps 

 A priori ffCO2 emission maps are prepared using the spatial and temporal distribution of the 

hourly Vulcan emission maps (version 2.2) developed for the 2002 emission year (Gurney et al., 2009; 

http://vulcan.project.asu.edu/). To estimate prior emissions for the years in this study, we scale the 

Vulcan emission maps by emission source sector to match in-state bottom-up ffCO2 estimates provided 

by the California Air Resources Board (CARB) sector-specific greenhouse gas inventory for 2012 

(CARB, 2014). The annual emissions for 2012 based are 343 Tg CO2/yr (CARB, 2014). For reference, 
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the emissions for 2009 – 2012 are 341, 337, 329 and 336 Tg CO2/yr, respectively, in a more recent 

version of the inventory (CARB, 2016), varying by less than 4%. For the region outside the US (e.g., 

part of Mexico, Canada) where the Vulcan emissions are not available, the global Fast Track EDGAR 

2010 emission inventory (EDGAR4.2) is used. The source sector definitions and the annual emissions 

from these sectors are listed in Table 1. The difference between the raw Vulcan and CARB at 2012 

(CARB, 2014) annual emissions for the cement production (CEM), industrial (IND), on-road mobile 

(MOB) and residential (RES) sectors is small relative to the CARB inventory (< 10%), while other 

sectors show larger variations up to a factor of 2.5 for aircraft (AIR), 70% for commercial (COM), 74% 

for non-road mobile (NON) and -29% for power production (UTL). Hence, the scaling of the original 

Vulcan emission to that of CARB leads to slightly different spatial distributions of ffCO2 emissions for 

some sub-regions comparing with original Vulcan map. In order to retain variations in ffCO2 emissions 

for weekdays relative to weekends we matched the weekday and weekend emission patterns of the 

CARB-scaled emission map to those of the original 2002 Vulcan data. The final annual average total 

emission map (summing from all source sectors) used for computing the predicted signals is shown in 

Figure 1. ffCO2 emissions are strongest in SoCAB and SFBA.  

 

 We use the combined CARB-scaled Vulcan and EDGAR (outside the Vulcan domain) emission 

map as our primary estimate of prior emissions but also use six other emission maps (Table S1) to 

evaluate the sensitivity of the inverse estimates to assumed prior emissions (Table 1). These include (1) 

the original (un-scaled) hourly-resolved Vulcan emission map within California and the EDGAR 

emission map out of the Vulcan domain, (2) the annual mean of the original (un-scaled) Vulcan 

emission and EDGAR map outside of the Vulcan domain, and (3) the EDGAR map alone (hereafter, 

original Vulcan, annual original Vulcan and EDGAR emission maps) (Figure 1). The other three maps 

are (4 and 5) the scaled Vulcan map scaled by factors of 0.5 and 2, and (6) a flat prior map with a 
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uniform flux of 1 umol/m2/s in each grid cell. The annual emissions in each region of California (see 

Figure 1 for the regions) are listed in Table S1 for all prior maps used in this study. Here, prior 

emissions are 62 – 64 Tg CO2/yr in SFBA (R07) and 105 - 128 Tg CO2/yr in SoCAB (R12) across the 

different versions of Vulcan and EDGAR. As shown in Table S1, the emission differences are large 

between the flat prior map and the scaled Vulcan map, and those differences are used to define the prior 

emission uncertainty in the inversion. We note that the uncertainty of the flat flux prior emission varies 

among the 17 regions. 

 

2.4 Atmospheric transport modeling 

 The WRF-STILT (Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian 

Transport) model (Lin et al., 2003; Skamarock et al., 2008; Nehrkorn et al., 2010) is used to simulate 

ffCO2 concentrations. For the inter-annual analysis for WGC during March 2009 – December 2012, we 

use the WRF simulations from Jeong et al. 2012a; 2012b; 2013. The WRF set-up for these simulations 

is summarized in Table S2 (for details see Jeong et al., 2012a; 2012b; 2013 and 2016; Bagley et al., 

2017). For June 2013 – May 2014, WRF3.5.1 is used to simulate meteorology for nested domains with 

36, 12 and 4 km resolution (d01, d02, and d03) and two domains of 1.3 km resolution (d04 and d05) as 

shown in Figure S1. The d03 domain (with 4 km horizontal resolution) covers most of California; d04 

and d05 (with 1.3 km resolution) are used to represent the metropolitan area of Los Angeles and the 

San Francisco Bay Area, respectively. As with previous work, the WRF model was run with two-way 

nesting with 50 vertical levels to resolve meteorology over complex terrain features of California. 

Initial and boundary meteorological conditions are driven by the North American Regional Reanalysis 

data set (Mesinger et al., 2006). Based on the transport evaluation using measured and predicted CO 

mixing ratios (Bagley et al., 2017), we apply the Mellor–Yamada Nakanishi Niino 2 (MYNN2) scheme 

to model planetary boundary layer (PBL) for all the months for the CIT site. For the SBC site, the 
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Yonsei University (YSU) scheme is used for November-January while MYNN2 is used for the other 

months since YSU boundary layer scheme enables a WRF parameterization designed to improve the 

representation of topographic effects (Bagley et al., 2017). For the land surface model (LSM), the Noah 

LSM is used for all seasons at both CIT and SBC (Newman et al., 2013). WRF simulations are 

conducted for each day separately, starting 6 hours before the day of simulation to provide model spin-

up (Jeong et al., 2012a; 2012b; 2013; Bagley et al., 2017).   

 

 Particle trajectories for each simulated receptor location and time point are estimated from the 

hourly WRF output by releasing an ensemble of 500 STILT particles at heights corresponding to the 

sampling locations: 91 m above ground (WGC), 10 m (CIT), and 58 m (SBC). The particles are run 

backward for 7 days driven by the WRF output within the smallest domain grid available for that 

location (i.e., d03, d02, d01 for WGC; and d04, d03, d02 and d01 for CIT and SBC). Footprints are 

computed by aggregation of particles weighted by the time spent at a given location and the inverse of 

the planetary boundary layer depth at that location. In Figure S2, it shows mean footprints for the  

flask receptors at sites of WGC (Jeong et al., 2012a; 2012b and 2013), CIT and SBC, which are 

computed from the best schemes in the Bagley et al. 2017. Generally, footprint sensitivity is largest 

near the receptor sites and tracks the upwind direction backward in time. There are clear seasonal 

patterns for the distribution of footprints at the measured sites as seen in Figure S2. As in Jeong et al., 

2012a; 2012b; 2013; 2016; 2017 and 2018, we only use an observation in the inversion when the 

majority of the particles (80%) for that observation reach the western boundary of the modeling domain 

at 130°W. 

 

2.5 Bayesian inverse model 

2.5.1. Inversion approach 
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 We use the scaling factor Bayesian inversion (SFBI) method used in previous studies (e.g., 

Jeong et al., 2012a; 2012b; 2013; Fischer et al., 2017), which relates model predictions to observations 

as,  

 

 c = K + v                               (4) 

 

     where c is the observed background-subtracted mixing ratio. In this study, it represents the 

reconstructed ffCO2 that is calculated from Equation 3. K is the predicted mixing ratio computed from 

the footprint, F, and prior emissions, E, as K = FE. Here,  is a set of scaling factors to scale prior 

emissions, and v is the model-data mismatch vector with covariance matrix R. R is a diagonal matrix 

representing the total uncertainty summed in quadrature by all error sources such as the measurement 

error and the transport error. Under Gaussian assumptions, the posterior estimate for  is solved as 

 

    prior

1

λ

T1

λ

T

post λQ+cRKQ+KRK=λ  111        (5) 

 

where prior is the a priori estimate for , and Q is the error covariance associated with prior. The 

posterior error covariance for  can be given as  

 

   11  1

λ

T

post Q+KRK=V            (6) 

 

The SFBI method is used to estimate optimal emissions at both seasonal and annual temporal scales for 

the WGC site (central California) and the combined CIT and SBC sites (southern California) and 

negative mixing ratios are not included in the inversion modeling. The inverse modeling is 
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implemented in two steps (first and final) as in Bergamaschi et al., 2005, and Jeong et al., 2012a; 2012b; 

2013. After the first inversion, the second/final inversion is conducted using data selected by another 

set of criteria, |ci – (K)i|
2 < Ri where  is a factor applied to error covariance matrix Ri. The values 

of are determined to optimize the chi-square statistics to ~1 (range from 2 – 3). This process is 

similar to that of McKain et al., 2015 who excluded data points with model-data residuals > 3σ from 

the emission calculations. 

  

 Following previous work using the same inversion setup (Jeong et al., 2016; Fischer et al., 

2017), we estimate 17 scaling factors (i.e., 16 regions in California and one region outside California), 

representing the regions shown in Figure 1 (bottom right). Here, the regions used for the inversions are 

constructed following a map of 15 “air basins” classified by CARB for air quality control 

(https://www.arb.ca.gov/desig/adm/basincnty.htm), with a further subdivision of the San Joaquin Valley 

into northern (Region 8) and southern (Region 16) regions. We use the inversion setup previously 

established by Jeong et al., 2016 and Fischer et al., 2017, even though the limited number of sites we 

have for ffCO2 here is not sufficient to provide observational constraints for all 16 regions in California. 

However, it was more convenient to use this existing setup than to modify the inversion setup. In the 

following analysis, we focus on emissions in central and southern California regions, particularly from 

SFBA (Region 7) and SoCAB (Region 12), because our observation sites are located in or near these 

regions and significant reductions in posterior uncertainties are found in the regions. We aggregate 

WGC observations into 15 individual 3-month (season) periods, 4 average “seasons” (combining same 

seasons from 2009-2012 together), and 4 years (combining data for each year together). For southern 

California, we estimate seasonal emissions (3-month averages) for the June 2013 - May 2014 period 

using the CIT observations alone, the SBC observations alone, and both CIT and SBC combined, 
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respectively.  

 

2.5.2. Uncertainty estimates  

 In SFBI, the error covariance matrix, R, represents the expected model-measurement mismatch 

error for each observation. Here, R is expressed as a diagonal matrix assuming uncorrelated errors, 

where each element represents the total uncertainty (as a quadrature sum) from different error sources 

including the number of particles released, flux aggregation, errors in modeled atmospheric transport, 

estimated background mixing ratios (Gerbig et al., 2003; Zhao et al., 2009; Göckede et al., 2010; Jeong 

et al., 2013) and the error from the observation. 

 

 Following Fischer et al., 2017, we estimated the R matrix as a quadrature sum of two 

components: 1) the mean measurement error in estimated ffCO2, and 2) a term proportional to the mean 

observed ffCO2 signal from Equation 3 at each site since it is very complex to compute the R matrix 

explicitly from all sources, and the second term, which presents all of the model-related error sources 

aforementioned, tends to be dominated by atmospheric transport model error with a magnitude that is 

generally about half of the background-subtracted atmospheric signals as shown in (Jeong et al., 2012a; 

2012b; 2013). Here, each component of R is calculated as 

 

 Ri = mean (ffCO2 observation error)^2  + (frac*mean(ffCO2 observation))^2  (7) 

 

where frac is the fraction to scale the mean seasonal reconstructed ffCO2, which is a ratio presenting 

how much the mean observed ffCO2 is considered in the R matrix. The average observed ffCO2 for 

each season is shown in Table 2 for different sites. To examine the sensitivity of posterior emission 

estimates to the assumed model-data mismatch uncertainty, three different values of 0.3, 0.5 and 0.7 are 
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used for frac. For example, with a factor of 0.5, we prescribe 50% of the mean ffCO2. In the results, we 

focus on the result using the assumed factor of 0.5 and discuss the sensitivity test results depending on 

the assumption on the fractional error. We note this is a reasonable assumption because Bagley et al., 

2017 found that the annual fractional RMSE (root-mean-square error) of predicted CO versus observed 

CO for CIT, SBC, and WGC site were 0.35, 0.46 and 0.51, respectively, using similar meteorological 

simulations. Moreover, the median fractional RMSE estimated from the hierarchical Bayesian 

inversion (Graven et al., 2018) for CIT, SBC, and WGC ranged from 0.4 - 0.7, similar to the range we 

use. In this work, we use 1.4 ppm for ffCO2 observation error for all months at the CIT and SBC sites 

based on the estimated measurement errors described above, and less than 1.68 ppm for WGC 

depending on season. 

 

 Under the assumption that uncertainties in prior emissions are uncorrelated between different 

regions, the prior model uncertainty is expressed in the diagonal matrix Q. For this work, we assume 

that the uncertainty in the ffCO2 emissions at the air basin level is estimated at 25% (1-σ), based on a 

county level comparison of Vulcan emissions with an independent California-specific bottom-up fuel 

use estimates for counties in California (de al Rue du Can et al., 2008). Under the assumption that the 

uncertainties between regions are uncorrelated, summing 25% emission uncertainties at the regional 

scale in quadrature yields a ~10% (1-σ) uncertainty in state-total ffCO2 emissions, similar to earlier 

assessments of likely uncertainty in annual ffCO2 emissions for countries with detailed accounting 

standards (NRC, 2010), and a recent comparison of multiple ffCO2 emission models reported by 

Fischer et al., 2017. The estimated multi-model uncertainty of ffCO2 prior emissions for SFBA 

obtained in a previous study by Fischer et al., 2017 was 23%, though the result for SoCAB was 10%. 

We calculated the uncertainty in annual emissions by averaging the uncertainty from each 3-month 

inversion. Here, we average the diagonal component of posterior uncertainty corresponding to each 
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region (e.g., SFBA or SoCAB) which include the effect of uncertainties correlated with those from 

other regions (Jeong et al., 2013). The t-test was applied to check whether the estimated emissions are 

significantly different between summer and winter by using Welch's t-test (Welch, 1974). If p value is 

less than 0.05, it is significantly different, otherwise not. Here, we emphasize that measurement and 

model input uncertainties are reported as 1-sigma (68% confidence) intervals, while posterior emission 

estimates are reported as 2-sigma (95% confidence) intervals. 

 

3 Results 

3.1 ffCO2 mixing ratios 

 The ffCO2 mixing ratios at WGC are shown in Figure 3 (top) for the period from March 2009 – 

November 2012. Both the predicted (from the scaled Vulcan map) and observed ffCO2 vary with season 

in Figure 3, showing the largest ffCO2 in winter, consistent with the observed seasonality of boundary 

layer depth in California (Bianco et al., 2011). We acknowledge background, respiration, and difference 

in actual ffCO2 emissions are possible explanations for the variation as well. The average observed 

ffCO2 is larger than 6.5 ppm in all winters, while the ffCO2 in other seasons averages 3 - 6 ppm, as 

shown in Table 2. For southern California, we make use of the measurements at CIT and SBC during 

the period of June 2013 - May 2014. Here, time averages of predicted daily ffCO2 from the scaled 

hourly Vulcan map are computed to match the aggregation of air samples as described in Section 2.1. 

As shown in Figure 3, the measured and predicted ffCO2 at CIT are much larger than those at SBC. 

 

3.2 ffCO2 emissions in central California 

3.2.1 Bayesian estimates of ffCO2 emissions in central CA 

  Results for Bayesian inversions for 15 seasons (omitting 2009 winter due to the small amount of 

data) are presented in Table 3. As described above, outliers are identified and removed after the first 
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inversion. For most seasons, no more than two data points are removed, with an exception of summer 

2011 where three data points are removed. The average number of data points in the final inversion is 

21. 

 

 Table 3 provides a summary of best-fit regression slopes and RMS errors for predicted vs. 

observed ffCO2 in different seasons before and after the inversions. The optimization generally reduces 

the RMS error of (predicted vs. measured) ffCO2 and adjusts the best-fit slope toward unity. For 

instance, in spring 2012 the best-fit slope is improved from 1.48±0.65 (RMS error = 3.28 ppm) to 

1.39±0.29 (2.00 ppm), where uncertainties in slope are reported at 1-sigma. However, both the 

posterior regression slopes are roughly consistent with unity, suggesting consistency between predicted 

and measured ffCO2 signals. 

 

 The annual average posterior ffCO2 emissions for 2009 - 2012 are shown in Figure 4, calculated 

by averaging the four seasonal emission estimates in each year (with 2009 missing winter as described 

above). Averaging posterior emissions over the 2009-2012 period, posterior emissions (60 Tg CO2/yr) 

are consistent with the prior (64 Tg CO2/yr) but uncertainty in the prior of 32 Tg CO2/yr is reduced to 

22 Tg CO2/yr, or roughly 50% uncertainty is reduced to 34% (where both are expressed at 2-sigma or 

95% confidence) for the SFBA, suggesting the WGC observations provide a constraint on SFBA 

emissions. Much smaller uncertainty reductions are obtained for the Sacramento and North San Joaquin 

Valley regions (12 Tg CO2/yr is reduced to 10 Tg CO2/yr and 6 to 5 Tg CO2/yr), and henceforth we 

focus on the SFBA. The posterior error covariance coefficients for SFBA, Sacramento and North San 

Joaquin Valley regions are less than 5%, indicating that posterior SFBA emissions weakly co-vary with 

those of other regions (Tarantola, 1987; Jeong et al., 2012a). 
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 Emissions in SFBA vary seasonally with emissions of 61±21, 48±16, 62±23 and 69±29 Tg 

CO2/yr (all at 95% confidence) in spring, summer, fall, and winter, respectively, as shown in Figure 5. 

The higher emission in winter relative to summer is significant (applying Welch's t-test (Welch, 1974), 

p < 0.05). We note the seasonal variation in posterior emissions is larger than that estimated in the 

Vulcan 2.2, where SFBA emissions vary as 63, 59, 61 and 67 Tg CO2/yr in spring, summary, fall, and 

winter, respectively. This suggests that the observations provide additional information not contained in 

the prior emission map. Also, the variation of Vulcan prior map emission is mainly due to varied 

emission of resident usage, which is highest in winter and lowest in summer. The standard deviation of 

seasonal emission of residual usage is as large as 3.8 Tg CO2/yr, but they are less than 1 Tg CO2/yr for 

other emission sectors. Examining inter-annual variation, posterior emissions from SFBA are 57±20, 

70±22, 62±23, and 51±23 Tg CO2/yr for 2009 to 2012 (all at 95% confidence), respectively. The results 

do not show significant inter-annual variation in emissions (p > 0.05), nor any significant trend over the 

2009 -2012 period. 

 

 The results for the SFBA suggest that the observations provide variable constraint on posterior 

emissions, with a maximum influence in summer and a minimum in winter. Following Turner et al., 

2015, we estimate the fractional constraint on posterior emissions provided by the observations relative 

to the constraint imposed by the prior in the seasonal average diagonal elements of the averaging kernel 

matrix (calculated as I – VpostQ
-1 where I is the identity matrix). Here, a value of unity suggests the 

observations constrain the emission fully while the value of zero indicates no constraint. The 

corresponding values for SFBA from the seasonal averaging kernel matrix are 0.58, 0.72, 0.45, 0.28 for 

spring, summer, fall, and winter, respectively, suggesting maximum constraint of 72% in summer and 

minimum constraint of 28% in winter. This variation is qualitatively consistent with the footprint 

analysis in this study and previous inversion results by Jeong et al., 2012a; 2012b; 2013; 2016 and 
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2017 where the summer footprints of WGC are strongest from SFBA to the west of WGC constraining 

SFBA emissions. During winter, WGC footprints are strongest in the Central Valley, more weakly 

constraining SFBA.  

 

3.2.2 Sensitivity tests 

 We compare average posterior emissions for SFBA using the original Vulcan, annual average 

Vulcan, and EDGAR emission maps to examine the impact of prior emissions on the inversion result. 

As shown in Table 4, in each case, posterior emissions are indistinguishable from the estimate of 60±22 

Tg CO2/yr (95% confidence) obtained with the scaled Vulcan map. This means that scaling the Vulcan 

map doesn’t impact estimating the posterior emission in SFBA significantly. 

 

 Next, we assess the ability of the observations to correctly recover regional emissions when 

starting with false prior emissions, either multiplying the Vulcan map by 50% and 200% or starting 

with the flat prior map (Table 4). By design, the prior emissions from these false prior maps (32, 128 

and 24.3 Tg CO2/yr in SFBA) are quite different from the scaled Vulcan emissions (64 Tg CO2/yr) and 

this test determines whether posterior emissions based on deliberately biased prior emissions are 

consistent with the posterior emissions based on the scaled Vulcan prior emission, within uncertainties. 

The posterior emissions obtained with the false prior maps are 40±14, 70±30 and 34±56 Tg CO2/yr (all 

at 95% confidence) for the 50% and 200% scaled Vulcan map and the flat prior map (Table 4), which 

are all consistent with the posterior obtained with the scaled Vulcan prior emissions (60 ± 22 Tg CO2/yr 

at 95% confidence). This suggests that the inversion system driven by the radiocarbon observations 

does provide some constraint on ffCO2 emissions in SFBA. For the flat prior map, the posterior 

uncertainty is very large, showing that it is necessary to use a prior map with realistic spatial 

distribution of emissions. This can be expected since ffCO2 emissions vary substantially over the SFBA 
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region (Figure 1) and the WGC site may be sensitive to only part of the SFBA region.   

 

 Next, we examine the effect of varying the model-data mismatch uncertainty across three 

different factors (frac = 0.3, 0.5, and 0.7). We also analyze the sensitivity of inversion to background 

data filtering where we remove data for observations when less than 80% of the particle trajectories 

reach the western edge of the model domain at 130 °W (referred to as “ocean cut”). The reasoning 

behind this filtering is that the background values we have used may be unsuitable for air masses 

entering California from directions other than from the west. The posterior emissions based on different 

inversion set-ups are summarized in Table S3, with ratios between posterior and prior emissions in 

SFBA ranging from 0.76±0.16 to 0.94±0.35 (all at 95% confidence). The implementation of 

background data filtering tends to increase the posterior emissions (so they are more similar to the prior) 

and increase the posterior uncertainties, compared to excluding the background data filtering, likely 

because of the weaker data constraint from fewer observations in the inversion. As the posterior 

estimates from these tests are all similar, it appears that the posterior emissions are only weakly 

sensitive to the assumed model-measurement uncertainty and the inclusion of background data filtering. 

 

 Last, we test the sensitivity of the inversion to the assumption on the prior uncertainty by using 

prior uncertainties ranging from 12.5% to 75% (as 1-sigma, equivalent to 35% to 150% at 95% 

confidence). Here, results for SFBA show that while posterior emissions vary with the assumed prior 

uncertainty (Table S4), they remain statistically indistinguishable (p > 0.05). This is because the mean 

changes by only 7% (58 – 62 Tg CO2/yr) while the posterior uncertainties are 23% or more, and 

proportional to the prior uncertainty. The increase of the posterior uncertainty with an increase in the 

prior uncertainty is typical in this type of inversion (Jeong et al., 2012a; Wecht et al, 2014), but the 

small changes in the central estimate of the posterior emissions suggests that it is not substantially 
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affected by the assumed prior uncertainty. In addition, the posterior emission is 50 ± 22 Tg CO2/yr at 

95% confidence from the 50% scaled Vulcan map with the prior uncertainty of 50%, which is much 

closer to the ‘best estimated’ emission of 60 ± 22 Tg CO2/yr at 95% confidence than the inversion 

estimation from scaled hourly Vulcan map and 25% uncertainty. This further supports the reliability of 

the tests of sensitivity of the estimated emissions to the prior uncertainty are reliable suggesting our 

observations constrain the regional total emission for SFBA.  

 

 Taken together, the sensitivity tests described above demonstrate that the inverse estimates of 

ffCO2 emissions for the SFBA region are resilient to the choice of prior emission map (false maps, 

Vulcan maps and EDGAR maps), and prior emission and measurement-model uncertainties.  

 

3.3 ffCO2 emissions in southern California 

3.3.1 Bayesian estimates of ffCO2 emissions in southern CA 

 Applying the standard inversion with the scaled hourly Vulcan prior emissions (prior 

uncertainty = 25%, and frac = 0.5), the posterior emissions for seasonal inversions for southern 

California sub-regions are shown in Figure 6. Here, the measurements from CIT and SBC reduce 

posterior uncertainty in SoCAB (region 12), with only minor uncertainty reductions in other regions, 

and so we focus on SoCAB. For SoCAB annual average posterior emissions are 124±31 Tg CO2/yr, 

consistent with the prior value of 109 ± 54 Tg CO2 /yr (where both are expressed at 95% confidence), 

but with a reduction of uncertainty. For comparison, inversions using only CIT or SBC data produce 

results that are similar to those above, with annual average posterior emissions of 124±42 and 113±35 

Tg CO2 /yr (all at 95% confidence) using either CIT or SBC, respectively.  

 

 Examining seasonality with all observations from CIT and SBC, the posterior emissions are 
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118±28, 132±37, 114±31, 131±27 Tg CO2 /yr (all at 95% confidence) for spring, summer, fall, and 

winter, respectively, with slightly higher emissions in summer and winter when more electricity is used 

for air conditioning and heating, though the effects are not statistically significant (p > 0.05). These are 

consistent with the Vulcan 2.2 prior map that the emission variation is contributed by sectors of the 

transportation, residual residual usage and power production with standard deviation of 3, 5 and 3 Tg 

CO2 /yr in comparison with other sectors less than 1 Tg CO2 /yr. The higher emission in the winter is 

mainly contributed by the resident usage, and the higher emissions in summer are due to mobile on 

road and power production. 

 

 Here, the emissions for SoCAB (Region 12) show normalized covariance of -0.03 with Region 

13, which suggests only a weak correlation between the two adjacent regions and further indicates the 

SoCAB emissions have been estimated independently. As above, we also estimate the diagonal 

elements of the averaging kernel matrix following Turner et al., 2015, finding values for SoCAB of 

0.72, 0.58, 0.64 and 0.77 for spring, summer, fall and winter, respectively. This result indicates that 

overall, the emissions in SoCAB are constrained by the observations somewhat better than in SFBA, 

likely due to the fact that observations from two sites are used to constrain SoCAB emissions and 

because the ffCO2 signals are larger.  

 

3.3.2 Sensitivity tests 

 Applying the tests with false prior maps in SoCAB (w/ prior emissions of 55, 218 and 32 Tg CO2 

/yr), posterior emissions are 81±22, 130±36 and 79±82 Tg CO2 /yr (all at 95% confidence) are 

statistically indistinguishable for the 50% and 200% Vulcan emission maps, and the flat flux prior map, 

respectively. These results are also consistent with the result obtained with the scaled hourly Vulcan 

prior emission, suggesting that the observations and modeling system are effective in estimating 
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posterior emissions (albeit with greater uncertainty) despite a substantially incorrect prior assumption. 

 

 The sensitivity tests on the model-measurement uncertainty, time averaging of the prior, and 

removal of data for the case when particle trajectories do not reach the western edge of the model 

domain are summarized in Table S5. Here, the scaling factors (ratio of posterior to prior) range from 

1.06±0.17 to 1.19±0.11 at 95% confidence depending on the assumptions. With the exception of a very 

small model-measurement uncertainty (frac = 0.3), the variations in posterior emissions are small. In 

addition, when the scaled Vulcan prior emissions are replaced with the original Vulcan, annual original 

Vulcan and EDGAR emission maps, the posterior emissions change by no more than 3 Tg CO2/yr, 

compared to the posterior uncertainties of 30 Tg CO2/yr (Table 5).  

 

 The results show weak sensitivity to the choice of prior uncertainty (posterior/prior factor shown 

in Table S4) and statistically indistinguishable posterior emissions among different assumptions, 

suggesting that the inversions are only weakly sensitive to the prior uncertainties. In addition, the 

estimated emission using scaled Vulcan map by 50% with 50% 1-sigma prior uncertainty assumption is 

107±30 Tg CO2 /yr at 95% confidence, which is consistent with the estimate of 124±31 Tg CO2/yr at 

95% confidence from scaled Vulcan map with 25% 1-sigma prior uncertainty. This results further 

support that the inversion result is not strongly influenced by our choice of prior uncertainty. 

  

 As with the results for central California, these sensitivity tests demonstrate that the SoCAB 

measurements provide constraint on posterior ffCO2 emissions that are consistent across a range of 

prior emission maps (false maps, Vulcan maps and EDGAR map), different inversion setting ups 

(different ways of combining data, different fraction values for R etc.) and different prior uncertainties 

(seeing Table 5). Furthermore, scaling the Vulcan map doesn’t impact the estimation of emissions in 
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SoCAB significantly seeing Table 5. 

 

4. Discussion  

 The estimated total emissions for SFBA averaged over the 2009 – 2012 period is 60±22 Tg 

CO2/yr at 95% confidence, which is 94 ± 35% of prior emissions for the region. Our inter-annual 

analysis for SFBA (see Figure 4) does not detect a significant inter-annual variation or trend in 

emissions. However, the seasonal variation in posterior emissions is statistically significant with 

emissions larger in winter than summer, consistent with variations in natural gas consumption in the 

SFBA (PG&E, 2016). Although Vulcan 2.2 prior map shows the seasonal variation is mainly 

contributed by the resident usage, source inversion will be helpful for the source-appointed study of 

ffCO2 emission in the future with additional tracer such as CH4. 

 

 Comparing with other studies, the estimated annual emissions in SFBA (and SoCAB) are 

consistent with the shorter term estimates obtained in Graven et al., 2018. However, the uncertainty 

reduction obtained in this work (1-posterior uncertainty/prior uncertainty) is smaller than that predicted 

by Fischer et al., 2017 (Table 4) or obtained by Graven et al., 2018 (Figure 3). This may be due to those 

studies using more measurement sites than the three tower sites used in this study (Brophy et al., 2018). 

Thus, it is necessary to adopt measurements from multiple towers in the inversion estimation. We note 

that more data may effective in reducing uncertainty in SFBA ffCO2 emissions if transport model bias 

errors are < 10%, as suggested by the evaluation of modeled wind speed and wind direction described 

by Bagley et al., 2017.  

 

 The inversion analysis using the combined measurements from SBC and CIT for June 2013 to 

May 2014 obtains posterior emissions of 124±31 Tg CO2/yr at 95% confidence in SoCAB, which is are 
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within 13 ± 28% of prior emissions for the region. Contrasting with the SFBA, SoCAB emissions 

appear marginally higher in summer than in other seasons, consistent with the work of Newman et al., 

2016. However, detection of any significant seasonality would likely require more observations. 

Different with the SFBA region, the seasonal variation of ffCO2 emission in SoCAB are contributed by 

more sources from the Vulcan 2.2 prior map such as transportation, resident usage and power 

production, thus it will request more tracers in the future source inversion such as CH4, CO and others. 

 

 With respect to additional potential sources of error, we speculate that inadequate spatial 

resolution in the Vulcan emission map may contribute to aggregation error in the model-data mismatch 

(R) matrix. For example, Feng et al., 2016 show the RMSE of ffCO2 between the WRF-Vulcan (1.3-km 

resolution map derived from the 10-km Vulcan map) predictions and in-situ measurements at Pasadena 

site is 5.51 ppm which is slightly smaller than 6.21 ppm for WRF-Hestia (1.3km resolution) modeling. 

However, uncertainties in the spatial distribution of ffCO2 may increase at smaller scales (Hogue et al., 

2016). Emissions in Vulcan tend to be less concentrated in urban regions compared to other emissions 

estimates such as EDGAR (Brophy et al., 2018). Here, simulated inversion experiments in California 

using the same measurement network as in Graven et al., 2018 found that posterior estimates emissions 

obtained using the EDGAR prior were consistently lower (although not significantly different) than 

that obtained using the Vulcan prior (Brophy et al., 2018).    

 

 In conclusion, the inversions reported here provide annually averaged estimates of urban ffCO2 

emissions for SFBA over the 2009-2012 period and SoCAB over the June 2013-May 2014 period. 

Together these regions comprise ~50% of total emissions in California. Further work including Δ14CO2 

observations at more sites across California is expected to improve estimates of fossil fuel CO2 

emissions in California. 
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Tables 

Table 1. Annual Fossil Fuel CO2 Emissions by Sector for Original and Scaled Vulcan Emissions and 

CARB 2012 Inventory (unit = Tg CO2/yr). 

Source Sectors 
Vulcan V2.2 

Original 

Vulcan V2.2 

Scaled 

CARB GHG 

Inventory 
AIR (aircraft) 7.08 2.80 2.80 
CEM (cement production) 6.38 6.89 6.89 
COM (commercial) 24.18 14.13 14.12 
IND (industrial) 68.36 75.88 75.87 
MOB (on-road mobile) 145.55 152.22 152.19 
NON (non-road mobile) 16.65 9.58 9.58 
RES (residential) 28.26 27.81 27.74 
UTL (power production) 38.24 53.73 53.74 

State Total 335.7 343.0 342.9 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 37 

 

Table 2. Mean reconstructed ffCO2 observed at WGC during 2009-2012 and at CIT and SBC during 

2013 - 2014 (unit = ppm). 

Site Year Winter Spring Summer Fall 
WGC 2009 NA 3.0 3.5 5.1 
WGC 2010 8.0 2.9 4.5 5.8 
WGC 2011 7.1 3.4 3.3 4.9 
WGC 2012 6.6 3.1 3.4 4.1 
CIT 2013-2014 25.0 21.6 25.9 21.5 
SBC 2013-2014 8.2 5.1 11.0 10.2 

 

 

 

 

Table 3. Best-fit slopes from regression of predicted ffCO2 from scaled Vulcan map vs. observed ffCO2 

at WGC (at 1-sigma, 68% confidence) before and after inversion during 2009 - 2012 (prior uncertainty 

=0.25, frac = 0.5 and ocean cut used). 

Year  Winter Spring Summer Fall 

2009 Before inversion NA 0.82±0.22 (1.91 ppm) 1.36±0.4 (2.86 ppm) 0.92±0.14 (2.92 ppm) 

 After final inversion NA 0.89±0.20 (1.38 ppm) 0.83±0.26 (1.90 ppm) 1.10±0.12 (2.09 ppm) 
2010 Before inversion 1.02±0.22 (3.53 ppm) 0.57±0.11 (1.99 ppm) 0.81±0.14 (2.22 ppm) 0.62±0.15 (4.01 ppm) 

 After final inversion 1.06±0.22 (2.89 ppm) 0.71±0.12 (1.66 ppm) 0.93±0.11 (1.46 ppm) 0.92±0.08 (1.77 ppm) 
2011 Before inversion 1.32±0.43 (5.36 ppm) 0.63±0.23 (2.6 ppm) -1.86±-2.77 (3.05 ppm) 1.49±0.85 (2.92 ppm) 

 After final inversion 1.04±0.22 (3.74 ppm) 0.84±0.23 (1.85 ppm) 1.53±0.74 (1.32 ppm) 1.35±0.51 (2.33 ppm) 
2012 Before inversion 0.42±0.46 (6.91 ppm) 2.90±1.06 (4.59 ppm) 1.54±0.67 (2.07 ppm) 1.48±0.65 (3.28 ppm) 

 After final inversion 1.42±0.47 (2.12 ppm) 1.00±0.49 (1.63 ppm) 1.15±0.54 (1.63 ppm) 1.39±0.29 (2.00 ppm) 

*The values in the parentheses are RMS errors.  
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Table 4. Prior and posterior ffCO2 emissions in units of Tg CO2/yr for the San Francisco Bay Area 

(uncertainty at 95% confidence) from all prior maps listed in first column based on 15 seasonal 

inversions for central California (prior uncertainty =0.25, factor for the R matrix = 0.5 and ocean cut 

used).  

 

Prior maps  Prior emissions Posterior emissions (unit = Tg CO2/yr) 

Scaled Vulcan map 64±32 60±22 

Original Vulcan map 62±31 62±23 

Annual original Vulcan map  62±31 61±23 

EDGAR map 64±32 65±25 

50% scaled Vulcan map 32±16 40±14 

200% Scaled Vulcan map 128±64 70±30 

Flat Flux map 24±12 34±56 

 

 

 

 

 

Table 5. Posterior ffCO2 emissions in SoCAB (posterior uncertainty at 95% confidence) from all prior 

maps listed in first column based on seasonal inversions for southern California (prior uncertainty 

=0.25; factor for the R matrix = 0.5; ocean cut used).  

 

Prior maps  Posterior emission (unit = Tg CO2/yr) 

Scaled Vulcan map 124±31 

Original Vulcan map 121±30 

Annual original Vulcan map  122±31 

EDGAR map 123±31 

50% Scaled Vulcan map 81±22 

200% Scaled Vulcan map 130±36 

Flat Flux map 79±82 
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Figures 

 

 
   

     

Figure 1. Scaled prior ffCO2 emissions from Vulcan V2.2 combined with EDGAR4.2 outside the US 

(top left); raw ffCO2 emission map from Vulcan V2.2 combined with EDGAR4.2 outside the US (top 

right); raw ffCO2 emission map of EDGAR4.2 (bottom left); region classification for ffCO2 inversion 

(right). This region map is same as the Air Basin map other than that the San Joaquin Valley was 

divided into two regions (Region 8 and Region 16).  
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Figure 2. Measured 14C of CO2 observed at WGC at 2009- 2012 (Dwgc in black) and the smoothed 

background (Dbg in red) obtained from Barrow, AK (top panel), and estimated fossil fuel CO2 for 

WGC (bottom panel). The error bar means uncertainties of 14CO2 and estimated fossil fuel CO2. 
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Figure 3. ffCO2 at WGC (top), CIT (middle) and SBC (bottom). Observed ffCO2 used in the first 

inversion (gray open circle), observed ffCO2 mixing ratio used in the final inversion (black filled circle), 

and WRF-STILT predicted ffCO2 mixing ratios from scaled Vulcan map (used in final inversion). The 

temporal label is month-year. 
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Figure 4. Annual average prior and posterior ffCO2 emissions from scaled Vulcan map (error bars 

show prior and posterior uncertainties at 95% confidence) based on 15 seasonal inversions in central 

California using measurements from WGC tower (factor for R matrix = 0.5; ocean cut used). SV, SFBA 

and SJV represent the Sacramento Valley (north Central Valley), San Francisco Bay Area, and the 

northern San Joaquin Valley (central Central Valley), each of which corresponds to Regions 3, 7 and 8, 

respectively (see Figure 1).  
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Figure 5. Seasonal average posterior ffCO2 emissions from scaled Vulcan map (posterior uncertainty at 

95% confidence) based on 15 seasonal inversions in central California using measurements from WGC 

tower (factor for R matrix = 0.5; ocean cut used). SV, SFBA and SJV represent the Sacramento Valley 

(north Central Valley), San Francisco Bay Area, and the northern San Joaquin Valley (central Central 

Valley) and they are Regions 3, 7 and 8 in Figure 1 (bottom right).  
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Figure 6. Seasonal posterior ffCO2 emissions from scaled Vulcan map (posterior uncertainty at 95% 

confidence) in regions of southern California using combined measurements from CIT and SBC towers 

(factor for the R matrix = 0.5; ocean flag used). MD, SCC, SoCAB, SS, SDC and SSJV represent the 

Mojave Desert, South Central Coast, South Coast Air Basin, Salton Sea, San Diego County, and 

southern San Joaquin Valley air basins, respectively and they are Regions 10, 11, 12, 13, 14 and 16 in 

Figure 2 (right).  
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