422 research outputs found

    Examining the Connectivity of Antarctic Krill on the West Antarctic Peninsula: Implications for Pygoscelis Penguin Biogeography and Population Dynamics

    Get PDF
    Antarctic krill (Euphausia superba) are considered a keystone species for higher trophic level predators along the West Antarctic Peninsula (WAP) during the austral summer. The connectivity of these populations may play a critical role in predator biogeography, especially for central-place foragers such as the Pygoscelis penguins that breed along the WAP during the austral summer. Here, we used a physical ocean model to examine adult krill connectivity in this region using simulated krill with realistic diel vertical migration behaviors across four austral summers. Specifically, we examined krill connectivity around the Adélie gap, a 400 km long region along the WAP with a distinct absence of Adélie penguin colonies, to determine if krill population connectivity around this feature played a role in its persistence. Our results indicate that krill populations north and south of the Adélie gap are nearly isolated from each other and that persistent current features play a role in this inter-region connectivity, or lack thereof. Our results indicate that simulated krill released within the Adélie gap are quickly advected from the region, suggesting that the lack of local krill recruit retention may play a role in the persistence of this biogeographic feature

    Interbasin Water Transfer, Riverine Connectivity, and Spatial Controls on Fish Biodiversity

    Get PDF
    BACKGROUND: Large-scale inter-basin water transfer (IBWT) projects are commonly proposed as solutions to water distribution and supply problems. These problems are likely to intensify under future population growth and climate change scenarios. Scarce data on the distribution of freshwater fishes frequently limits the ability to assess the potential implications of an IBWT project on freshwater fish communities. Because connectivity in habitat networks is expected to be critical to species' biogeography, consideration of changes in the relative isolation of riverine networks may provide a strategy for controlling impacts of IBWTs on freshwater fish communities. METHODS/PRINCIPAL FINDINGS: Using empirical data on the current patterns of freshwater fish biodiversity for rivers of peninsular India, we show here how the spatial changes alone under an archetypal IBWT project will (1) reduce freshwater fish biodiversity system-wide, (2) alter patterns of local species richness, (3) expand distributions of widespread species throughout peninsular rivers, and (4) decrease community richness by increasing inter-basin similarity (a mechanism for the observed decrease in biodiversity). Given the complexity of the IBWT, many paths to partial or full completion of the project are possible. We evaluate two strategies for step-wise implementation of the 11 canals, based on economic or ecological considerations. We find that for each step in the project, the impacts on freshwater fish communities are sensitive to which canal is added to the network. CONCLUSIONS/SIGNIFICANCE: Importantly, ecological impacts can be reduced by associating the sequence in which canals are added to characteristics of the links, except for the case when all 11 canals are implemented simultaneously (at which point the sequence of canal addition is inconsequential). By identifying the fundamental relationship between the geometry of riverine networks and freshwater fish biodiversity, our results will aid in assessing impacts of IBWT projects and balancing ecosystem and societal demands for freshwater, even in cases where biodiversity data are limited

    The influence of biotic and abiotic factors on the bacterial microbiome of gentoo penguins ( Pygoscelis papua ) in their natural environment

    Get PDF
    The microbiome is a key factor in the health, well-being, and success of vertebrates, contributing to the adaptive capacity of the host. However, the impact of geographic and biotic factors that may affect the microbiome of wild birds in polar environments is not well defined. To address this, we determined the bacterial 16S rRNA gene sequence profiles in faecal samples from pygoscelid penguin populations in the Scotia Arc, focusing on gentoo penguins. This mesopredatory group breeds in defined colonies across a wide geographic range. Since diet could influence microbiome structure, we extracted dietary profiles from a eukaryotic 18S rRNA gene sequence profile. The bacterial microbiome profiles were considered in the context of a diverse set of environmental and ecological measures. Integrating wide geographic sampling with bacterial 16S and eukaryotic 18S rRNA gene sequencing of over 350 faecal samples identified associations between the microbiome profile and a suite of geographic and ecological factors. Microbiome profiles differed according to host species, colony identity, distance between colonies, and diet. Interestingly there was also a relationship between the proportion of host DNA (in relation to total 18S rRNA gene signal) and the microbiome, which may reflect gut passage time. Colony identity provided the strongest association with differences in microbiome profiles indicating that local factors play a key role in the microbiome structure of these polar seabirds. This may reflect the influence of local transfer of microbes either via faecal-oral routes, during chick feeding or other close contact events. Other factors including diet and host species also associate with variation in microbiome profile, and in at least some locations, the microbiome composition varies considerably between individuals. Given the variation in penguin microbiomes associated with diverse factors there is potential for disruption of microbiome associations at a local scale that could influence host health, productivity, and immunological competence. The microbiome represents a sensitive indicator of changing conditions, and the implications of any changes need to be considered in the wider context of environmental change and other stressors

    Population structure and phylogeography of the Gentoo Penguin (Pygoscelis papua) across the Scotia Arc

    Get PDF
    Climate change, fisheries' pressure on penguin prey, and direct human disturbance of wildlife have all been implicated in causing large shifts in the abundance and distribution of penguins in the Southern Ocean. Without mark-recapture studies, understanding how colonies form and, by extension, how ranges shift is challenging. Genetic studies, particularly focused on newly established colonies, provide a snapshot of colonization and can reveal the extent to which shifts in abundance and occupancy result from changes in demographic rates (e.g., reproduction and survival) or migration among suitable patches of habitat. Here, we describe the population structure of a colonial seabird breeding across a large latitudinal range in the Southern Ocean. Using multilocus microsatellite genotype data from 510 Gentoo penguin (Pygoscelis papua) individuals from 14 colonies along the Scotia Arc and Antarctic Peninsula, together with mitochondrial DNA data, we find strong genetic differentiation between colonies north and south of the Polar Front, that coincides geographically with the taxonomic boundary separating the subspecies P. p. papua and P. p. ellsworthii. Using a discrete Bayesian phylogeographic approach, we show that southern Gentoos expanded from a possible glacial refuge in the center of their current range, colonizing regions to the north and south through rare, long-distance dispersal. Our findings show that this dispersal is important for new colony foundation and range expansion in a seabird species that ordinarily exhibits high levels of natal philopatry, though persistent oceanographic features serve as barriers to movement

    Pan-Antarctic analysis aggregating spatial estimates of Adélie penguin abundance reveals robust dynamics despite stochastic noise

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 8 (2017): 832, doi:10.1038/s41467-017-00890-0.Colonially-breeding seabirds have long served as indicator species for the health of the oceans on which they depend. Abundance and breeding data are repeatedly collected at fixed study sites in the hopes that changes in abundance and productivity may be useful for adaptive management of marine resources, but their suitability for this purpose is often unknown. To address this, we fit a Bayesian population dynamics model that includes process and observation error to all known Adélie penguin abundance data (1982–2015) in the Antarctic, covering >95% of their population globally. We find that process error exceeds observation error in this system, and that continent-wide “year effects” strongly influence population growth rates. Our findings have important implications for the use of Adélie penguins in Southern Ocean feedback management, and suggest that aggregating abundance across space provides the fastest reliable signal of true population change for species whose dynamics are driven by stochastic processes.H.J.L., C.C.-C., G.H., C.Y., and K.T.S. gratefully acknowledge funding provided by US National Aeronautics and Space Administration Award No. NNX14AC32G and U.S. National Science Foundation Office of Polar Programs Award No. NSF/OPP-1255058. S.J., L.L., M.M.H., Y.L., and R.J. gratefully acknowledge funding provided by US National Aeronautics and Space Administration Award No. NNX14AH74G. H.J.L., C.Y., S.J., Y.L., and R.J. gratefully acknowledge funding provided by U.S. National Science Foundation Office of Polar Programs Award No. NSF/PLR-1341548. S.J. gratefully acknowledges support from the Dalio Explore Fund
    corecore