14 research outputs found

    Legal Issues for ADRN Users

    Get PDF
    The guide sets out the legal background to data protection laws in the UK, and offers a broad explanation of the current law relating to data sharing and linkage, as well as a consideration of the implications of the impending EU General Data Protection Regulation 2016 (GDPR). There is also consideration of some non-legal issues surrounding the topic

    Functional anonymisation: Personal data and the data environment

    Get PDF
    Anonymisation of personal data has a long history stemming from the expansion of the types of data products routinely provided by National Statistical Institutes. Variants on anonymisation have received serious criticism reinforced by much-publicised apparent failures. We argue that both the operators of such schemes and their critics have become confused by being overly focused on the properties of the data themselves. We claim that, far from being able to determine whether data are anonymous (and therefore non-personal) by looking at the data alone, any anonymisation technique worthy of the name must take account of not only the data but also their environment. This paper proposes an alternative formulation called functional anonymisation that focuses on the relationship between the data and the environment within which the data exist (their data environment). We provide a formulation for describing the relationship between the data and their environment that links the legal notion of personal data with the statistical notion of disclosure control. Anonymisation, properly conceived and effectively conducted, can be a critical part of the toolkit of the privacy-respecting data controller and the wider remit of providing accurate and usable data

    Identifiability, genomics and UK Data Protection Law

    No full text
    Analyses of individuals' genomes - their entire DNA sequence - have increased knowledge about the links between genetics and disease. Anticipated advances in 'next generation' DNA-sequencing techniques will see the routine research use of whole genomes, rather than distinct parts, within the next few years. The scientific benefits of genomic research are, however, accompanied by legal and ethical concerns. Despite the assumption that genetic research data can and will be rendered anonymous, participants' identities can sometimes be elucidated, which could cause data protection legislation to apply. We undertake a timely reappraisal of these laws - particularly new penalties - and identifiability in genomic research

    Risks of and risk factors for COVID-19 disease in people with diabetes:a cohort study of the total population of Scotland

    Get PDF
    Background: We aimed to ascertain the cumulative risk of fatal or critical care unit-treated COVID-19 in people with diabetes and compare it with that of people without diabetes, and to investigate risk factors for and build a cross-validated predictive model of fatal or critical care unit-treated COVID-19 among people with diabetes. Methods: In this cohort study, we captured the data encompassing the first wave of the pandemic in Scotland, from March 1, 2020, when the first case was identified, to July 31, 2020, when infection rates had dropped sufficiently that shielding measures were officially terminated. The participants were the total population of Scotland, including all people with diabetes who were alive 3 weeks before the start of the pandemic in Scotland (estimated Feb 7, 2020). We ascertained how many people developed fatal or critical care unit-treated COVID-19 in this period from the Electronic Communication of Surveillance in Scotland database (on virology), the RAPID database of daily hospitalisations, the Scottish Morbidity Records-01 of hospital discharges, the National Records of Scotland death registrations data, and the Scottish Intensive Care Society and Audit Group database (on critical care). Among people with fatal or critical care unit-treated COVID-19, diabetes status was ascertained by linkage to the national diabetes register, Scottish Care Information Diabetes. We compared the cumulative incidence of fatal or critical care unit-treated COVID-19 in people with and without diabetes using logistic regression. For people with diabetes, we obtained data on potential risk factors for fatal or critical care unit-treated COVID-19 from the national diabetes register and other linked health administrative databases. We tested the association of these factors with fatal or critical care unit-treated COVID-19 in people with diabetes, and constructed a prediction model using stepwise regression and 20-fold cross-validation. Findings: Of the total Scottish population on March 1, 2020 (n=5 463 300), the population with diabetes was 319 349 (5·8%), 1082 (0·3%) of whom developed fatal or critical care unit-treated COVID-19 by July 31, 2020, of whom 972 (89·8%) were aged 60 years or older. In the population without diabetes, 4081 (0·1%) of 5 143 951 people developed fatal or critical care unit-treated COVID-19. As of July 31, the overall odds ratio (OR) for diabetes, adjusted for age and sex, was 1·395 (95% CI 1·304–1·494; p<0·0001, compared with the risk in those without diabetes. The OR was 2·396 (1·815–3·163; p<0·0001) in type 1 diabetes and 1·369 (1·276–1·468; p<0·0001) in type 2 diabetes. Among people with diabetes, adjusted for age, sex, and diabetes duration and type, those who developed fatal or critical care unit-treated COVID-19 were more likely to be male, live in residential care or a more deprived area, have a COVID-19 risk condition, retinopathy, reduced renal function, or worse glycaemic control, have had a diabetic ketoacidosis or hypoglycaemia hospitalisation in the past 5 years, be on more anti-diabetic and other medication (all p<0·0001), and have been a smoker (p=0·0011). The cross-validated predictive model of fatal or critical care unit-treated COVID-19 in people with diabetes had a C-statistic of 0·85 (0·83–0·86). Interpretation: Overall risks of fatal or critical care unit-treated COVID-19 were substantially elevated in those with type 1 and type 2 diabetes compared with the background population. The risk of fatal or critical care unit-treated COVID-19, and therefore the need for special protective measures, varies widely among those with diabetes but can be predicted reasonably well using previous clinical history
    corecore