2,226 research outputs found

    Increasing turbidity in the North Sea during the 20th century due to changing wave climate

    Get PDF
    Data on Secchi disc depth (the depth at which a standard white disc lowered into the water just becomes invisible to a surface observer) show that water clarity in the North Sea declined during the 20th century, with likely consequences for marine primary production. However, the causes of this trend remain unknown. Here we analyse the hypothesis that changes in the North Sea's wave climate were largely responsible by causing an increase in the concentrations of suspended particulate matter (SPM) in the water column through the resuspension of seabed sediments. First, we analysed the broad-scale statistical relationships between SPM and bed shear stress due to waves and tides. We used hindcasts of wave and current data to construct a space–time dataset of bed shear stress between 1997 and 2017 across the northwest European Continental Shelf and compared the results with satellite-derived SPM concentrations. Bed shear stress was found to drive most of the inter-annual variation in SPM in the hydrographically mixed waters of the central and southern North Sea. We then used a long-term wave reanalysis to construct a time series of bed shear stress from 1900 to 2010. This shows that bed shear stress increased significantly across much of the shelf during this period, with increases of over 20 % in the southeastern North Sea. An increase in bed shear stress of this magnitude would have resulted in a large reduction in water clarity. Wave-driven processes are rarely included in projections of climate change impacts on marine ecosystems, but our analysis indicates that this should be reconsidered for shelf sea regions

    Age effect on retina and optic disc normal values

    Get PDF
    Purpose: To investigate retinal thickness and optic disc parameters by the Retinal Thickness Analyzer (RTA) glaucoma program in older normal subjects and to determine any age effect. Methods: Subjects over 40 years of age without any prior history of eye diseases were recruited. Only subjects completely normal on clinical ophthalmologic examination and on visual field testing by Humphrey Field Analyzer (HFA) using the SITA 24-2 program were included. A total of 74 eyes from 74 subjects with even age distribution over the decades were enrolled and underwent topographic measurements of the posterior pole and of the optic disc by RTA. The `glaucoma full' program in software version 4.11B was applied. Results: Mean patient age was 59.9 +/- 10.3 years with a range from 40 to 80 years. The only parameter intraocular pressure (IOP) correlated with was retinal posterior pole asymmetry (r=0.27, p=0.02). IOP itself increased significantly with age (r=0.341, p=0.003). Mean defect and pattern standard deviation of the HFA did not correlate with any of the retinal or optic disc measurements. Increasing age correlated significantly with some of the morphologic measurements of the RTA: decreasing perifoveal minimum thickness (r=-0.258, p=0.026), increased cup-to-disc area ratio (r=0.302, p=0.016) and increased cup area (r=0.338 p=0.007). Conclusions: An age effect exists for some of the retina and optic disc measurements obtained by the RTA. Copyright (C) 2005 S. Karger AG, Basel

    Tensor voting for robust color edge detection

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-94-007-7584-8_9This chapter proposes two robust color edge detection methods based on tensor voting. The first method is a direct adaptation of the classical tensor voting to color images where tensors are initialized with either the gradient or the local color structure tensor. The second method is based on an extension of tensor voting in which the encoding and voting processes are specifically tailored to robust edge detection in color images. In this case, three tensors are used to encode local CIELAB color channels and edginess, while the voting process propagates both color and edginess by applying perception-based rules. Unlike the classical tensor voting, the second method considers the context in the voting process. Recall, discriminability, precision, false alarm rejection and robustness measurements with respect to three different ground-truths have been used to compare the proposed methods with the state-of-the-art. Experimental results show that the proposed methods are competitive, especially in robustness. Moreover, these experiments evidence the difficulty of proposing an edge detector with a perfect performance with respect to all features and fields of application.This research has been supported by the Swedish Research Council under the project VR 2012-3512

    Maternal immunization against Group B streptococcus: World Health Organization research and development technological roadmap and preferred product characteristics.

    Get PDF
    Group B streptococcus, found in the vagina or lower gastrointestinal tract of about 10-40% of women of reproductive age, is a leading cause of early life invasive bacterial disease, potentially amenable to prevention through maternal immunization during pregnancy. Following a consultation process with global stakeholders, the World Health Organization is herein proposing priority research and development pathways and preferred product characteristics for GBS vaccines, with the aim to facilitate and accelerate vaccine licensure, policy recommendation for wide scale use and implementation

    The deleted in brachydactyly B domain of ROR2 is required for receptor activation by recruitment of Src

    Get PDF
    The transmembrane receptor 'ROR2' resembles members of the receptor tyrosine kinase family of signalling receptors in sequence but its' signal transduction mechanisms remain enigmatic. This problem has particular importance because mutations in ROR2 are associated with two human skeletal dysmorphology syndromes, recessive Robinow Syndrome (RS) and dominant acting Brachydactyly type B (BDB). Here we show, using a constitutive dimerisation approach, that ROR2 exhibits dimerisation-induced tyrosine kinase activity and the ROR2 C-terminal domain, which is deleted in BDB, is required for recruitment and activation of the non-receptor tyrosine kinase Src. Native ROR2 phosphorylation is induced by the ligand Wnt5a and is blocked by pharmacological inhibition of Src kinase activity. Eight sites of Src-mediated ROR2 phosphorylation have been identified by mass spectrometry. Activation via tyrosine phosphorylation of ROR2 receptor leads to its internalisation into Rab5 positive endosomes. These findings show that BDB mutant receptors are defective in kinase activation as a result of failure to recruit Src

    Seismic imaging of Santorini: subsurface constraints on caldera collapse and present-day magma recharge

    Get PDF
    Volcanic calderas are surface depressions formed by roof collapse following evacuation of magma from an underlying reservoir. The mechanisms of caldera formation are debated and predict differences in the evolution of the caldera floor and distinct styles of magma recharge. Here we use a dense, active source, seismic tomography study to reveal the sub-surface physical properties of the Santorini caldera in order to understand caldera formation. We find a ∼3-km-wide, cylindrical low-velocity anomaly in the upper 3 km beneath the north-central portion of the caldera, that lies directly above the pressure source of the 2011-2012 inflation. We interpret this anomaly as a low-density volume caused by excess porosities of between 4% and 28%, with pore spaces filled with hot seawater. Vents that were formed during the first three phases of the 3.6 ka Late Bronze Age (LBA) eruption are located close to the edge of the imaged structure. The correlation between older volcanic vents and the low-velocity anomaly suggests that this feature may be long-lived. We infer that collapse of a limited area of the caldera floor resulted in a high-porosity, low-density cylindrical volume, which formed by either chaotic collapse along reverse faults, wholesale subsidence and infilling with tuffs and ignimbrites, phreatomagmatic fracturing, or a combination of these processes. Phase 4 eruptive vents are located along the margins of the topographic caldera and the velocity structure indicates that coherent down-drop of the wider topographic caldera followed the more limited collapse in the northern caldera. This progressive collapse sequence is consistent with models for multi-stage formation of nested calderas along conjugate reverse and normal faults. The upper crustal density differences inferred from the seismic velocity model predict differences in subsurface gravitational loading that correlate with the location of 2011-2012 edifice inflation. This result supports the hypothesis that sub-surface density anomalies may influence present-day magma recharge events. We postulate that past collapses and the resulting topographical and density variations at Santorini influence magma focusing between eruptive cycles, a feedback process that may be important in other volcanoes

    Thermal Adaptation and Diversity in Tropical Ecosystems: Evidence from Cicadas (Hemiptera, Cicadidae)

    Get PDF
    The latitudinal gradient in species diversity is a central problem in ecology. Expeditions covering approximately 16°54′ of longitude and 21°4′ of latitude and eight Argentine phytogeographic regions provided thermal adaptation data for 64 species of cicadas. We test whether species diversity relates to the diversity of thermal environments within a habitat. There are general patterns of the thermal response values decreasing in cooler floristic provinces and decreasing maximum potential temperature within a habitat except in tropical forest ecosystems. Vertical stratification of the plant communities leads to stratification in species using specific layers of the habitat. There is a decrease in thermal tolerances in species from the understory communities in comparison to middle level or canopy fauna. The understory Herrera umbraphila Sanborn & Heath is the first diurnally active cicada identified as a thermoconforming species. The body temperature for activity in H. umbraphila is less than and significantly different from active body temperatures of all other studied species regardless of habitat affiliation. These data suggest that variability in thermal niches within the heterogeneous plant community of the tropical forest environments permits species diversification as species adapt their physiology to function more efficiently at temperatures different from their potential competitors

    A 160-kilobit molecular electronic memory patterned at 10^(11) bits per square centimetre

    Get PDF
    The primary metric for gauging progress in the various semiconductor integrated circuit technologies is the spacing, or pitch, between the most closely spaced wires within a dynamic random access memory (DRAM) circuit. Modern DRAM circuits have 140nm pitch wires and a memory cell size of 0.0408 μm^2. Improving integrated circuit technology will require that these dimensions decrease over time. However, at present a large fraction of the patterning and materials requirements that we expect to need for the construction of new integrated circuit technologies in 2013 have ‘no known solution’. Promising ingredients for advances in integrated circuit technology are nanowires, molecular electronics and defect-tolerant architectures, as demonstrated by reports of single devices and small circuits. Methods of extending these approaches to large-scale, high-density circuitry are largely undeveloped. Here we describe a 160,000-bit molecular electronic memory circuit, fabricated at a density of 10^(11) bits cm^(-2) (pitch 33 nm; memory cell size 0.0011 mm^2), that is, roughly analogous to the dimensions of a DRAM circuit projected to be available by 2020. A monolayer of bistable, [2]rotaxane molecules 10 served as the data storage elements. Although the circuit has large numbers of defects, those defects could be readily identified through electronic testing and isolated using software coding. The working bits were then configured to form a fully functional random access memory circuit for storing and retrieving information

    Observation of Coherent Elastic Neutrino-Nucleus Scattering

    Full text link
    The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross-section is the largest by far of all low-energy neutrino couplings. This mode of interaction provides new opportunities to study neutrino properties, and leads to a miniaturization of detector size, with potential technological applications. We observe this process at a 6.7-sigma confidence level, using a low-background, 14.6-kg CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the Standard Model for this process, are observed in high signal-to-background conditions. Improved constraints on non-standard neutrino interactions with quarks are derived from this initial dataset
    corecore