1,495 research outputs found

    Chemical aspects related to using recycled geopolymers as aggregates

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Despite extensive research into sustainability of geopolymers, end-of-life aspects have been largely overlooked. A recycling scenario is examined in this study. This requires an investigation of alkali leaching potential from a geopolymeric matrix. To study the feasibility of geopolymer cement (GPC) recycling, the migration of alkalis was evaluated for the first time on a microstructural level through energy dispersive X-ray (EDX) scanning electron microscopy (SEM) elemental mapping and leaching tests. Macroscale impacts were assessed through an investigation of Portland cement (PC) mortar properties affected by alkali concentration. Leaching tests indicated that alkalis immediately become available in aqueous environments, but the majority remain chemically or physically bound in the matrix. This type of leaching accelerates the initial setting of PC paste. Elemental mapping and EDX/SEM analysis showed a complex paste-aggregate interfacial transition zone. Exchange of calcium and sodium, revealed by the maps, resulted in the migration of sodium into the PC paste and the formation of additional calcium-silicon-based phases in the geopolymeric matrix. Strength values of mortars with 25% and 50% recycled aggregates (RA) showed negligible differences compared with the reference sample. Screening tests indicated a low potential for GPC RA inducing alkali-silica reaction. Transport of GPC RA alkalis and the underlying mechanisms were observed. This transport phenomenon was found to have minor effects on the properties of the PC mortar, indicating that recycling of geopolymers is a viable reuse practice.Peer reviewedFinal Published versio

    New directions in cellular therapy of cancer: a summary of the summit on cellular therapy for cancer

    Get PDF
    A summit on cellular therapy for cancer discussed and presented advances related to the use of adoptive cellular therapy for melanoma and other cancers. The summit revealed that this field is advancing rapidly. Conventional cellular therapies, such as tumor infiltrating lymphocytes (TIL), are becoming more effective and more available. Gene therapy is becoming an important tool in adoptive cell therapy. Lymphocytes are being engineered to express high affinity T cell receptors (TCRs), chimeric antibody-T cell receptors (CARs) and cytokines. T cell subsets with more naĂŻve and stem cell-like characteristics have been shown in pre-clinical models to be more effective than unselected populations and it is now possible to reprogram T cells and to produce T cells with stem cell characteristics. In the future, combinations of adoptive transfer of T cells and specific vaccination against the cognate antigen can be envisaged to further enhance the effectiveness of these therapies

    A general and efficient method for estimating continuous IBD functions for use in genome scans for QTL

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identity by descent (IBD) matrix estimation is a central component in mapping of Quantitative Trait Loci (QTL) using variance component models. A large number of algorithms have been developed for estimation of IBD between individuals in populations at discrete locations in the genome for use in genome scans to detect QTL affecting various traits of interest in experimental animal, human and agricultural pedigrees. Here, we propose a new approach to estimate IBD as continuous functions rather than as discrete values.</p> <p>Results</p> <p>Estimation of IBD functions improved the computational efficiency and memory usage in genome scanning for QTL. We have explored two approaches to obtain continuous marker-bracket IBD-functions. By re-implementing an existing and fast deterministic IBD-estimation method, we show that this approach results in IBD functions that produces the exact same IBD as the original algorithm, but with a greater than 2-fold improvement of the computational efficiency and a considerably lower memory requirement for storing the resulting genome-wide IBD. By developing a general IBD function approximation algorithm, we show that it is possible to estimate marker-bracket IBD functions from IBD matrices estimated at marker locations by any existing IBD estimation algorithm. The general algorithm provides approximations that lead to QTL variance component estimates that even in worst-case scenarios are very similar to the true values. The approach of storing IBD as polynomial IBD-function was also shown to reduce the amount of memory required in genome scans for QTL.</p> <p>Conclusion</p> <p>In addition to direct improvements in computational and memory efficiency, estimation of IBD-functions is a fundamental step needed to develop and implement new efficient optimization algorithms for high precision localization of QTL. Here, we discuss and test two approaches for estimating IBD functions based on existing IBD estimation algorithms. Our approaches provide immediately useful techniques for use in single QTL analyses in the variance component QTL mapping framework. They will, however, be particularly useful in genome scans for multiple interacting QTL, where the improvements in both computational and memory efficiency are the key for successful development of efficient optimization algorithms to allow widespread use of this methodology.</p

    Using GIS to create synthetic disease outbreaks

    Get PDF
    BACKGROUND: The ability to detect disease outbreaks in their early stages is a key component of efficient disease control and prevention. With the increased availability of electronic health-care data and spatio-temporal analysis techniques, there is great potential to develop algorithms to enable more effective disease surveillance. However, to ensure that the algorithms are effective they need to be evaluated. The objective of this research was to develop a transparent user-friendly method to simulate spatial-temporal disease outbreak data for outbreak detection algorithm evaluation. A state-transition model which simulates disease outbreaks in daily time steps using specified disease-specific parameters was developed to model the spread of infectious diseases transmitted by person-to-person contact. The software was developed using the MapBasic programming language for the MapInfo Professional geographic information system environment. RESULTS: The simulation model developed is a generalised and flexible model which utilises the underlying distribution of the population and incorporates patterns of disease spread that can be customised to represent a range of infectious diseases and geographic locations. This model provides a means to explore the ability of outbreak detection algorithms to detect a variety of events across a large number of stochastic replications where the influence of uncertainty can be controlled. The software also allows historical data which is free from known outbreaks to be combined with simulated outbreak data to produce files for algorithm performance assessment. CONCLUSION: This simulation model provides a flexible method to generate data which may be useful for the evaluation and comparison of outbreak detection algorithm performance

    Estimates of live-tree carbon stores in the Pacific Northwest are sensitive to model selection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estimates of live-tree carbon stores are influenced by numerous uncertainties. One of them is model-selection uncertainty: one has to choose among multiple empirical equations and conversion factors that can be plausibly justified as locally applicable to calculate the carbon store from inventory measurements such as tree height and diameter at breast height (DBH). Here we quantify the model-selection uncertainty for the five most numerous tree species in six counties of northwest Oregon, USA.</p> <p>Results</p> <p>The results of our study demonstrate that model-selection error may introduce 20 to 40% uncertainty into a live-tree carbon estimate, possibly making this form of error the largest source of uncertainty in estimation of live-tree carbon stores. The effect of model selection could be even greater if models are applied beyond the height and DBH ranges for which they were developed.</p> <p>Conclusions</p> <p>Model-selection uncertainty is potentially large enough that it could limit the ability to track forest carbon with the precision and accuracy required by carbon accounting protocols. Without local validation based on detailed measurements of usually destructively sampled trees, it is very difficult to choose the best model when there are several available. Our analysis suggests that considering tree form in equation selection may better match trees to existing equations and that substantial gaps exist, in terms of both species and diameter ranges, that are ripe for new model-building effort.</p

    Left gaze bias in humans, rhesus monkeys and domestic dogs

    Get PDF
    While viewing faces, human adults often demonstrate a natural gaze bias towards the left visual field, that is, the right side of the viewee’s face is often inspected first and for longer periods. Using a preferential looking paradigm, we demonstrate that this bias is neither uniquely human nor limited to primates, and provide evidence to help elucidate its biological function within a broader social cognitive framework. We observed that 6-month-old infants showed a wider tendency for left gaze preference towards objects and faces of different species and orientation, while in adults the bias appears only towards upright human faces. Rhesus monkeys showed a left gaze bias towards upright human and monkey faces, but not towards inverted faces. Domestic dogs, however, only demonstrated a left gaze bias towards human faces, but not towards monkey or dog faces, nor to inanimate object images. Our findings suggest that face- and species-sensitive gaze asymmetry is more widespread in the animal kingdom than previously recognised, is not constrained by attentional or scanning bias, and could be shaped by experience to develop adaptive behavioural significance

    Group B streptococcal carriage, serotype distribution and antibiotic susceptibilities in pregnant women at the time of delivery in a refugee population on the Thai-Myanmar border

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Group B Streptococcus (GBS) is the leading cause of neonatal sepsis in the developed world. Little is known about its epidemiology in the developing world, where the majority of deaths from neonatal infections occur. Maternal carriage of GBS is a prerequisite for the development of early onset GBS neonatal sepsis but there is a paucity of carriage data published from the developing world, in particular South East Asia.</p> <p>Methods</p> <p>We undertook a cross sectional study over a 13 month period in a remote South East Asian setting on the Thai-Myanmar border. During labour, 549 mothers had a combined vaginal rectal swab taken for GBS culture. All swabs underwent both conventional culture as well as PCR for GBS detection. Cultured GBS isolates were serotyped by latex agglutination, those that were negative or had a weak positive reaction and those that were PCR positive but culture negative were additionally tested using multiplex PCR based on the detection of GBS capsular polysaccharide genes.</p> <p>Results</p> <p>The GBS carriage rate was 12.0% (95% CI: 9.4-15.0), with 8.6% positive by both culture and PCR and an additional 3.5% positive by PCR alone. Serotypes, Ia, Ib, II, III, IV, V, VI and VII were identified, with II the predominant serotype. All GBS isolates were susceptible to penicillin, ceftriaxone and vancomycin and 43/47 (91.5%) were susceptible to erythromycin and clindamycin.</p> <p>Conclusions</p> <p>GBS carriage is not uncommon in pregnant women living on the Thai-Myanmar border with a large range of serotypes represented.</p

    Priority setting in primary health care - dilemmas and opportunities: a focus group study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Swedish health care authorities use three key criteria to produce national guidelines for local priority setting: severity of the health condition, expected patient benefit, and cost-effectiveness of medical intervention. Priority setting in primary health care (PHC) has significant implications for health costs and outcomes in the health care system. Nevertheless, these guidelines have been implemented to a very limited degree in PHC. The objective of the study was to qualitatively assess how general practitioners (GPs) and nurses perceive the application of the three key priority-setting criteria.</p> <p>Methods</p> <p>Focus groups were held with GPs and nurses at primary health care centres, where the staff had a short period of experience in using the criteria for prioritising in their daily work.</p> <p>Results</p> <p>The staff found the three key priority-setting criteria (severity, patient benefit, and cost-effectiveness) to be valuable for priority setting in PHC. However, when the criteria were applied in PHC, three additional dimensions were identified: 1) viewpoint (medical or patient's), 2) timeframe (now or later), and 3) evidence level (group or individual).</p> <p>Conclusions</p> <p>The three key priority-setting criteria were useful. Considering the three additional dimensions might enhance implementation of national guidelines in PHC and is probably a prerequisite for the criteria to be useful in priority setting for individual patients.</p
    • 

    corecore