1,712 research outputs found

    Improving student support in professional placement learning: findings from the South west peninsula pilot of a new english national placement quality assurance and enhancement process.

    Get PDF
    English stakeholder collaboration has resulted in a new quality assurance process for non-medical health and social care placement providers and higher education institutions. This study aimed to discover the impact on student support that taking part in a pilot had on participating placement areas. Using a questionnaire survey with longitudinal follow-up one year later, we found that placement staff valued the opportunity to review and improve student support practices. This was still in evidence a year later where the pilot was described as giving the opportunity to provide evidence of aspects of student support practice; communicating and changing or developing aspects of that practice. Benefits accrued from interdisciplinary working in sharing and collaborating with other professions and organisations. Such activity could enhance clinical support staff activities and facilitate strategic partnerships between placement providers and higher education institutions

    Multilayered lipid membrane stacks for biocatalysis using membrane enzymes

    Get PDF
    Multilayered or stacked lipid membranes are a common principle in biology and have various functional advantages compared to single lipid membranes, such as their ability to spatially organize processes, compartmentalize molecules and greatly increase surface area and hence membrane protein concentration. Here we report on a supramolecular assembly of a multilayered lipid membrane system in which poly-L-lysine electrostatically links negatively charged lipid membranes. When suitable membrane enzymes are incorporated, either an ubiquinol oxidase (cytochrome bo3 from Escherichia coli) or an oxygen tolerant hydrogenase (the membrane-bound hydrogenase from Ralstonia eutropha), cyclic voltammetry (CV) reveals a linear increase in biocatalytic activity with each additional membrane layer. Electron transfer between the enzymes and the electrode is mediated by the quinone pool that is present in the lipid phase. We deduce by atomic force microscopy, CV and fluorescence microscopy that quinones are able to diffuse between the stacked lipid membrane layers via defect sites where the lipid membranes are interconnected. This assembly is akin to that of interconnected thylakoid membranes or the folded lamella of mitochondria and have significant potential for mimicry in biotechnology applications such as energy production or biosensing

    Power calculations using exact data simulation: A useful tool for genetic study designs.

    Get PDF
    Statistical power calculations constitute an essential first step in the planning of scientific studies. If sufficient summary statistics are available, power calculations are in principle straightforward and computationally light. In designs, which comprise distinct groups (e.g., MZ & DZ twins), sufficient statistics can be calculated within each group, and analyzed in a multi-group model. However, when the number of possible groups is prohibitively large (say, in the hundreds), power calculations on the basis of the summary statistics become impractical. In that case, researchers may resort to Monte Carlo based power studies, which involve the simulation of hundreds or thousands of replicate samples for each specified set of population parameters. Here we present exact data simulation as a third method of power calculation. Exact data simulation involves a transformation of raw data so that the data fit the hypothesized model exactly. As in power calculation with summary statistics, exact data simulation is computationally light, while the number of groups in the analysis has little bearing on the practicality of the method. The method is applied to three genetic designs for illustrative purposes

    A general and efficient method for estimating continuous IBD functions for use in genome scans for QTL

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identity by descent (IBD) matrix estimation is a central component in mapping of Quantitative Trait Loci (QTL) using variance component models. A large number of algorithms have been developed for estimation of IBD between individuals in populations at discrete locations in the genome for use in genome scans to detect QTL affecting various traits of interest in experimental animal, human and agricultural pedigrees. Here, we propose a new approach to estimate IBD as continuous functions rather than as discrete values.</p> <p>Results</p> <p>Estimation of IBD functions improved the computational efficiency and memory usage in genome scanning for QTL. We have explored two approaches to obtain continuous marker-bracket IBD-functions. By re-implementing an existing and fast deterministic IBD-estimation method, we show that this approach results in IBD functions that produces the exact same IBD as the original algorithm, but with a greater than 2-fold improvement of the computational efficiency and a considerably lower memory requirement for storing the resulting genome-wide IBD. By developing a general IBD function approximation algorithm, we show that it is possible to estimate marker-bracket IBD functions from IBD matrices estimated at marker locations by any existing IBD estimation algorithm. The general algorithm provides approximations that lead to QTL variance component estimates that even in worst-case scenarios are very similar to the true values. The approach of storing IBD as polynomial IBD-function was also shown to reduce the amount of memory required in genome scans for QTL.</p> <p>Conclusion</p> <p>In addition to direct improvements in computational and memory efficiency, estimation of IBD-functions is a fundamental step needed to develop and implement new efficient optimization algorithms for high precision localization of QTL. Here, we discuss and test two approaches for estimating IBD functions based on existing IBD estimation algorithms. Our approaches provide immediately useful techniques for use in single QTL analyses in the variance component QTL mapping framework. They will, however, be particularly useful in genome scans for multiple interacting QTL, where the improvements in both computational and memory efficiency are the key for successful development of efficient optimization algorithms to allow widespread use of this methodology.</p

    Evidence of Differential Allelic Effects between Adolescents and Adults for Plasma High-Density Lipoprotein

    Get PDF
    A recent meta-analysis of genome-wide association (GWA) studies identified 95 loci that influence lipid traits in the adult population and found that collectively these explained about 25–30% of heritability for each trait. Little is known about how these loci affect lipid levels in early life, but there is evidence that genetic effects on HDL- and LDL-cholesterol (HDL-C, LDL-C) and triglycerides vary with age. We studied Australian adults (N = 10,151) and adolescents (N = 2,363) who participated in twin and family studies and for whom we have lipid phenotypes and genotype information for 91 of the 95 genetic variants. Heterogeneity tests between effect sizes in adult and adolescent cohorts showed an excess of heterogeneity for HDL-C (pHet<0.05 at 5 out of 37 loci), but no more than expected by chance for LDL-C (1 out of 14 loci), or trigycerides (0 out 24). There were 2 (out of 5) with opposite direction of effect in adolescents compared to adults for HDL-C, but none for LDL-C. The biggest difference in effect size was for LDL-C at rs6511720 near LDLR, adolescents (0.021±0.033 mmol/L) and adults (0.157±0.023 mmol/L), pHet = 0.013; followed by ZNF664 (pHet = 0.018) and PABPC4 (pHet = 0.034) for HDL-C. Our findings suggest that some of the previously identified variants associate differently with lipid traits in adolescents compared to adults, either because of developmental changes or because of greater interactions with environmental differences in adults

    Factors associated with low fitness in adolescents – A mixed methods study

    Get PDF
    Background: Fitness and physical activity are important for cardiovascular and mental health but activity and fitness levels are declining especially in adolescents and among girls. This study examines clustering of factors associated with low fitness in adolescents in order to best target public health interventions for young people. Methods: 1147 children were assessed for fitness, had blood samples, anthropometric measures and all data were linked with routine electronic data to examine educational achievement, deprivation and health service usage. Factors associated with fitness were examined using logistic regression, conditional trees and data mining cluster analysis. Focus groups were conducted with children in a deprived school to examine barriers and facilitators to activity for children in a deprived community. Results: Unfit adolescents are more likely to be deprived, female, have obesity in the family and not achieve in education. There were 3 main clusters for risk of future heart disease/diabetes (high cholesterol/insulin); children at low risk (not obese, fit, achieving in education), children ‘visibly at risk’ (overweight, unfit, many hospital/GP visits) and ‘invisibly at risk’ (unfit but not overweight, failing in academic achievement). Qualitative findings show barriers to physical activity include cost, poor access to activity, lack of core physical literacy skills and limited family support. Conclusions: Low fitness in the non-obese child can reveal a hidden group who have high risk factors for heart disease and diabetes but may not be identified as they are normal weight. In deprived communities low fitness is associated with non-achievement in education but in non-deprived communities low fitness is associated with female gender. Interventions need to target deprived families and schools in deprived areas with community wide campaigns

    Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma

    Full text link
    Asthma is caused by a combination of poorly understood genetic and environmental factors(1,2). We have systematically mapped the effects of single nucleotide polymorphisms ( SNPs) on the presence of childhood onset asthma by genome-wide association. We characterized more than 317,000 SNPs in DNA from 994 patients with childhood onset asthma and 1,243 non-asthmatics, using family and case-referent panels. Here we show multiple markers on chromosome 17q21 to be strongly and reproducibly associated with childhood onset asthma in family and case-referent panels with a combined P value of P < 10(-12). In independent replication studies the 17q21 locus showed strong association with diagnosis of childhood asthma in 2,320 subjects from a cohort of German children (P=0.0003) and in 3,301 subjects from the British 1958 Birth Cohort (P=0.0005). We systematically evaluated the relationships between markers of the 17q21 locus and transcript levels of genes in Epstein - Barr virus (EBV)-transformed lymphoblastoid cell lines from children in the asthma family panel used in our association study. The SNPs associated with childhood asthma were consistently and strongly associated (P < 10(-22)) in cis with transcript levels of ORMDL3, a member of a gene family that encodes transmembrane proteins anchored in the endoplasmic reticulum(3). The results indicate that genetic variants regulating ORMDL3 expression are determinants of susceptibility to childhood asthma.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62682/1/nature06014.pd

    The Role of the BMP Signaling Antagonist Noggin in the Development of Prostate Cancer Osteolytic Bone Metastasis

    Get PDF
    Members of the BMP and Wnt protein families play a relevant role in physiologic and pathologic bone turnover. Extracellular antagonists are crucial for the modulation of their activity. Lack of expression of the BMP antagonist noggin by osteoinductive, carcinoma-derived cell lines is a determinant of the osteoblast response induced by their bone metastases. In contrast, osteolytic, carcinoma-derived cell lines express noggin constitutively. We hypothesized that cancer cell-derived noggin may contribute to the pathogenesis of osteolytic bone metastasis of solid cancers by repressing bone formation. Intra-osseous xenografts of PC-3 prostate cancer cells induced osteolytic lesions characterized not only by enhanced osteoclast-mediated bone resorption, but also by decreased osteoblast-mediated bone formation. Therefore, in this model, uncoupling of the bone remodeling process contributes to osteolysis. Bone formation was preserved in the osteolytic lesions induced by noggin-silenced PC-3 cells, suggesting that cancer cell-derived noggin interferes with physiologic bone coupling. Furthermore, intra-osseous tumor growth of noggin-silenced PC-3 cells was limited, most probably as a result of the persisting osteoblast activity. This investigation provides new evidence for a model of osteolytic bone metastasis where constitutive secretion of noggin by cancer cells mediates inhibition of bone formation, thereby preventing repair of osteolytic lesions generated by an excess of osteoclast-mediated bone resorption. Therefore, noggin suppression may be a novel strategy for the treatment of osteolytic bone metastases
    corecore