8,200 research outputs found

    Pore geometry as a control on rock strength

    Get PDF
    This study was funded via RJW's University of Leicester start-up fund, as part of AAB's PhD project. We thank Don Swanson and Mike Poland at HVO, Hawai'i, for their help and advice during fieldwork planning and sample collection in the Koa'e fault system, and the National Park Service for granting a research permit to collect rock samples. Sergio Vinciguerra is thanked for access to the Rock Mechanics and Physics lab at the British Geological Survey and Audrey Ougier-Simonin is thanked for her help preparing samples and advice during testing. We thank Mike Heap (EOST Strasbourg) and an anonymous reviewer for their detailed and careful comments that greatly improved the manuscript.Peer reviewedPostprin

    A PCP Characterization of AM

    Get PDF
    We introduce a 2-round stochastic constraint-satisfaction problem, and show that its approximation version is complete for (the promise version of) the complexity class AM. This gives a `PCP characterization' of AM analogous to the PCP Theorem for NP. Similar characterizations have been given for higher levels of the Polynomial Hierarchy, and for PSPACE; however, we suggest that the result for AM might be of particular significance for attempts to derandomize this class. To test this notion, we pose some `Randomized Optimization Hypotheses' related to our stochastic CSPs that (in light of our result) would imply collapse results for AM. Unfortunately, the hypotheses appear over-strong, and we present evidence against them. In the process we show that, if some language in NP is hard-on-average against circuits of size 2^{Omega(n)}, then there exist hard-on-average optimization problems of a particularly elegant form. All our proofs use a powerful form of PCPs known as Probabilistically Checkable Proofs of Proximity, and demonstrate their versatility. We also use known results on randomness-efficient soundness- and hardness-amplification. In particular, we make essential use of the Impagliazzo-Wigderson generator; our analysis relies on a recent Chernoff-type theorem for expander walks.Comment: 18 page

    Asymptotically Fast Algorithms for Spherical and Related Transforms

    Get PDF
    This paper considers the problem of computing the harmonic expansion of functions defined on the sphere. We begin by proving convolution theorems that relate the convolution of two functions on the sphere to a multiplication in the sprectral domain, as well as the multiplication of two functions on the sphere to a convolution in the spectral domain. These convolution theorems are then used to develop a sampling theorem on the sphere

    Intensive Mutagenesis of the Nisin Hinge Leads to the Rational Design of Enhanced Derivatives

    Get PDF
    peer-reviewedNisin A is the most extensively studied lantibiotic and has been used as a preservative by the food industry since 1953. This 34 amino acid peptide contains three dehydrated amino acids and five thioether rings. These rings, resulting from one lanthionine and four methyllanthionine bridges, confer the peptide with its unique structure. Nisin A has two mechanisms of action, with the N-terminal domain of the peptide inhibiting cell wall synthesis through lipid II binding and the C-terminal domain responsible for pore-formation. The focus of this study is the three amino acid ‘hinge’ region (N 20, M 21 and K 22) which separates these two domains and allows for conformational flexibility. As all lantibiotics are gene encoded, novel variants can be generated through manipulation of the corresponding gene. A number of derivatives in which the hinge region was altered have previously been shown to possess enhanced antimicrobial activity. Here we take this approach further by employing simultaneous, indiscriminate site-saturation mutagenesis of all three hinge residues to create a novel bank of nisin derivative producers. Screening of this bank revealed that producers of peptides with hinge regions consisting of AAK, NAI and SLS displayed enhanced bioactivity against a variety of targets. These and other results suggested a preference for small, chiral amino acids within the hinge region, leading to the design and creation of producers of peptides with hinges consisting of AAA and SAA. These producers, and the corresponding peptides, exhibited enhanced bioactivity against Lactococcus lactis HP, Streptococcus agalactiae ATCC 13813, Mycobacterium smegmatis MC2155 and Staphylococcus aureus RF122 and thus represent the first example of nisin derivatives that possess enhanced activity as a consequence of rational design.This work was financed by a grant from the Irish Department of Agriculture, Food and the Marine through the Food Institutional Research Measure (08/RD/C/691) and with Science Foundation Investigator award (10/IN.1/B3027)

    Non-perturbative renormalization of the KPZ growth dynamics

    Full text link
    We introduce a non-perturbative renormalization approach which identifies stable fixed points in any dimension for the Kardar-Parisi-Zhang dynamics of rough surfaces. The usual limitations of real space methods to deal with anisotropic (self-affine) scaling are overcome with an indirect functional renormalization. The roughness exponent α\alpha is computed for dimensions d=1d=1 to 8 and it results to be in very good agreement with the available simulations. No evidence is found for an upper critical dimension. We discuss how the present approach can be extended to other self-affine problems.Comment: 4 pages, 2 figures. To appear in Phys. Rev. Let

    Coastal oceanography and sedimentology in New Zealand, 1967-91.

    Get PDF
    This paper reviews research that has taken place on physical oceanography and sedimentology on New Zealand's estuaries and the inner shelf since c. 1967. It includes estuarine sedimentation, tidal inlets, beach morphodynamics, nearshore and inner shelf sedimentation, tides and coastal currents, numerical modelling, short-period waves, tsunamis, and storm surges. An extensive reference list covering both published and unpublished material is included. Formal teaching and research programmes dealing with coastal landforms and the processes that shape them were only introduced to New Zealand universities in 1964; the history of the New Zealand Journal of Marine and Freshwater Research parallels and chronicles the development of physical coastal science in New Zealand, most of which has been accomplished in last 25 years

    Radiation from low-momentum zoom-whirl orbits

    Full text link
    We study zoom-whirl behaviour of equal mass, non-spinning black hole binaries in full general relativity. The magnitude of the linear momentum of the initial data is fixed to that of a quasi-circular orbit, and its direction is varied. We find a global maximum in radiated energy for a configuration which completes roughly one orbit. The radiated energy in this case exceeds the value of a quasi-circular binary with the same momentum by 15%. The direction parameter only requires minor tuning for the localization of the maximum. There is non-trivial dependence of the energy radiated on eccentricity (several local maxima and minima). Correlations with orbital dynamics shortly before merger are discussed. While being strongly gauge dependent, these findings are intuitive from a physical point of view and support basic ideas about the efficiency of gravitational radiation from a binary system.Comment: 9 pages, 6 figures, Amaldi8 conference proceedings as publishe

    Distance-generalized Core Decomposition

    Full text link
    The kk-core of a graph is defined as the maximal subgraph in which every vertex is connected to at least kk other vertices within that subgraph. In this work we introduce a distance-based generalization of the notion of kk-core, which we refer to as the (k,h)(k,h)-core, i.e., the maximal subgraph in which every vertex has at least kk other vertices at distance h\leq h within that subgraph. We study the properties of the (k,h)(k,h)-core showing that it preserves many of the nice features of the classic core decomposition (e.g., its connection with the notion of distance-generalized chromatic number) and it preserves its usefulness to speed-up or approximate distance-generalized notions of dense structures, such as hh-club. Computing the distance-generalized core decomposition over large networks is intrinsically complex. However, by exploiting clever upper and lower bounds we can partition the computation in a set of totally independent subcomputations, opening the door to top-down exploration and to multithreading, and thus achieving an efficient algorithm

    A molecular theory for two-photon and three-photon fluorescence polarization

    Get PDF
    In the analysis of molecular structure and local order in heterogeneous samples, multiphoton excitation of fluorescence affords chemically specific information and high-resolution imaging. This report presents the results of an investigation that secures a detailed theoretical representation of the fluorescence polarization produced by one-, two-, and three-photon excitations, with orientational averaging procedures being deployed to deliver the fully disordered limits. The equations determining multiphoton fluorescence response prove to be expressible in a relatively simple, generic form, and graphs exhibit the functional form of the multiphoton fluorescence polarization. Amongst other features, the results lead to the identification of a condition under which the fluorescence produced through the concerted absorption of any number of photons becomes completely unpolarized. It is also shown that the angular variation of fluorescence intensities is reliable indicator of orientational disorder
    corecore