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Abstract

This paper considers the problem of comput-
ing the harmonic expansion of functions de-
fined on the sphere. We begin by proving con-
volution theorems that relate the convolution
of two functions on the sphere to a “multipli-
cation” in the sprectral domain, as well as the
multiplication of two functions on the sphere
to a “convolution” in the spectral domain.
These convolution theorems are then used to
develop a sampling theorem on the sphere. In
particular, if a function on the sphere is band-
limited (i.e. in the span of the spherical har-
monics Y™, < L,|m| < 1), then a sampling
of the function at O(L?) points can ezactly
recover the function. This sampling uses an
asymptotically optimal number of points, and
improves a sampling of O(L3) points for which
error estimates were previously known. The
sampling theorem also explains why a com-
monly used method of computing spherical
transforms actually gives a poor estimate of
the actual harmonic content of the function.
Next, preliminary to developing a transform
on the sphere, we give an O(n(logn)?) time
algorithm for computing the Legendre trans-
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form of a function on the interval [-1, 1] sam-
pled at n points. This improves the best pre-
viously known time bound of O(n?). This al-
gorithm is then generalized to achieve algo-
rithms for the spherical transform and its in-
verse transform that take O(n!5(logn)?) time,
where n is the number of sample points that
are in accordance with the sampling theorem.
This improves the naive O(n?) bound, which is
the best previously known. These transforms
give an O(n®(log n)?) algorithm for convolv-
ing two functions on the sphere, which would
be useful for computer vision and elsewhere,
This appears to be the first method for exactly
computing the convolution, because it is dif-
ficult to determine how compute a spherical
convolution in the absence of both an exact
sampling theorem and a convolution theorem.
The techniques developed are also applicable
to computing other transforms for which only
naive O(n?) algorithms are known, such as the
Laguerre, Hermite, and Hankel transforms.

1 Introduction
It is difficult to overstate the importance of

the O(nlogn) Fourier transform of Cooley and
Tukey [3]. The algorithm is widely applicable



and it can been used to develop efficient al-
gorithms for other related transforms, such as
the two dimensional Fourier transform. How-
ever, despite the fact that the fast Fourier
transform is considered an integral part of
theoretical computer science, as evidenced by
its inclusion in nearly every algorithms text
and the ¢ontinuous attention it has received in
the literature (see, for example, [5,17,15,16,1}),
there is almost no work on other important
transforms. Recently, however, the spherical
tranform has been identified as a transform in
need of a fast algorithm [1%]. It is the purpose
of this paper to provide one.

Spherical transforms are useful in a variety
of fields including computer vision, statistics,
tomography, geomagnetics, seismology, atmo-
spheric science, signal processing, and crystal-
lography. To date, however, no algorithm for
computing spherical transforms is known that
is asymptotically better than the naive O(n?)
algorithm, where 7 is the number of sampled
points of the function. Moreover, the standard
method of approximating the transform from
a sampling produces severe aliasing problems,
as is explained by our convolution and sam-
pling theorems.

The spherical transform is rather different
from the two dimensional fourier transform.
When the 2-D Fourier transform is approxi-
mated in the discrete case, one must assume
the the sampled function is periodic along two
orthogonal axes. This is equivalent to defin-
ing the discrete function on a torus. Thus, the
familiar two-dimensional Fourier transform is
a toroidal transform. We are concerned with
harmonic analysis on the sphere, which ex-
hibits rather different periodicity as compared
to the torus.

The spherical transform, like the Fourier
transform, has an interesting convolution
property. As is well known, the 2-D convo-
lution, which is efficiently computed by the
two-dimensional Fourier transform, is useful

in pattern matching. By convolving an immage
with a pattern, it is possible to locate trans-
lated copies of the pattern in the image. If
the pattern has been rotated, however, this
method will fail. In the case of functions on
the sphere, the convolution method can detect
translated and rotated versions of the pattern.
Thus, a fast spherical convolution, which we
show to follow from a fast transform and in-
verse, would be useful in computer vision.
One not uncommon approach to harmonic
analysis on the sphere, motivated by the ab-
sence of efficient methods for spherical trans-
forms, is to approximate the sphere as a torus
by identifying two poles and to proceed as
though the problem were framed on the torus.
This leaves many planetary scientists in the
curious position of having approximated the
earth as a torus. A refinement of this approach
is then to transform the toroidal harmonics
back to the sphere to get an approximation of
the spherical harmonic coefficients [6]. In gen-
eral this approximation can be quite poor. In
contrast, we develop ezact and efficient meth-
ods for for computing transforms of band lim-
ited signals by first finding an apropriate sam-
pling of the functions for which we can ef-
ficiently compute the transform. Of course,
in order to justify the claim of exactness we
must take as our model of computation the
RAM with exact real arithmetic. This model
in this context is at least historically justified,
since a similar model was used by Gauss for
the method of Gauss quadrature that exactly
integrates degree bounded polynomials.
There are three immediate obstacles to the
efficient computation of spherical harmonics,
all of which make the problem interesting and
challenging, in addition to explaining why lit-
tle progress has been made in this area. First,
the fast Fourier transform relies on the fact
that the roots of unity generate a discrete sub-
group on the circle. Unfortunately the discrete
subgoups of the sphere consist of cyclic and



dihedral groups of rotations about one axis,
and the symmetries of the platonic solids [4].
These do not fill up the sphere densely enough
to get even a reasonable approximation [12].
The second obstacle is that spherical harmon-
ics are products of exponentials in one coor-
dinate and associated Legendre functions in
the other. This would seem to require a fast
Legendre transform. Yet there is no known
algorithm for transforms with nontrivial poly-
nomial kernels that takes o(n?) time. Finally,
the only exact sampling theorem on the sphere
that we are aware of requires an aymptotically
large number of sample points, which is related
to the lack of useful discrete subgroups.

This paper presents an O(n!®(logn)?) al-
gorithm that, given a data structure of size
O(Nlog N), computes the spherical harmon-
ics of a discrete function on the sphere that is
defined on an equi-angular gridof n = 2F < N
points. This improves the naive O(n?) bound,
which is the best previously known. Addi-
tionally, we describe methods to invert this
transform in O(n!®) time, and using these
trasforms, an O(n!?(logn)?) time algorithm
to convolve discrete functions on the sphere.

First we develop convolution theorems on
the sphere, and using these, prove a sampling
theorem for band-limited signals. It is this
sampling theorem that allows the exact com-
putation of the the spherical harmonics. As a
preliminary step in devoloping a fast spherical
transform, we give an O(n(logn)?) time algo-
rithm to compute the Legendre transform of a
function sampled at the n points cos(27i/n),
for 0 < i < nandn =28 <N, given a
data-structure of size O(N log N). This im-
proves the best previously known bound of
O(n?) [9]. Moreover, the technique used gen-
eralizes to any class of polynomials defined by
a simple recurrence. This includes the Ja-
cobi, Chebyshev, generalized Laguerre, and
Hermite polynomials. Transforms based on
these families of orthogonal polynomials, and

related (non polynomial) transforms, such as
the Hankel transform, are useful in weather
modelling, signal processing, and tomography.
No algorithms were known for these trans-
forms that were asymptotically better than the
naive O(n?) time algorithms, where n is the
number of sample points.

Finally, we apply these results to develop
the spherical transform. '

The paper is organized as follows. Section
2 defines the spherical transform and some
of its properties. Section 3 proves the con-
volution theorems. Section 4 discusses sam-
pling on the sphere. Section 5 develops an
O(n(logn)?) Legendre transform. Section 6
adapts the methods for the Legendre trans-
form to the spherical transform. Section 7 con-
cludes.

2 Preliminaries

Many problems in physics and engineering
possess spherical symmetry, and seperation
of variables in spherical coordinates reduces
these problems in pars$ to the analysis of func-
tions on S?, the two dimensional unit sphere
(surface of the unit ball) comprised of all unit
vectors in three space, R3. The techniques
of Fourier analysis, so familiar and useful for
many problems in Euclidean space, are also
helpful in the analysis in the non-Euclidean
setting of the sphere. What follows is a brief
review of these ideas.

Analysis on the sphere requires the use of
coordinates. A familiar choice is the param-
eterization of the points of S by angles of
colattitude and longitude, 8 and ¢, with 0
measured down from the z-axis,varying be-
tween 0 and 7, and ¢ varying between 0
and 27, measured from the x-axis. Thus a
unit vector w on S? may be parameterized as
(cos(¢)sin(8),sin() sin(¥), cos(f)) in these co-

ordinates.



Fourier analysis may be characterized as the
systematic use of symmetry to simplify certain
linear operators. In the case considered in this
paper, the unit sphere admits the special or-
thogonal group in three variables, SO(3) as a
transitive group of symmetries. These are the
proper rotations of RS about the origin, and
are characterized as those three by three real
matrices of determinant one whose inverses are
given by their transposes. For example, we
have the rotations about the z-axis:

cos¢ -—sing 0
k(¢) = | sing cosp 0| |P€ [0,27] 3,
0 0 1
or those about the x-axis:
1 0 0
a(@)=1{0 cos¢ sing ||p€0 27)
0 —sing cosé

In fact, any rotation g in SO(3) may be writ-
ten as a product of matrices of these forms
in the well known Euler angle decomposition:
g = u(¢)a(@)u(v) with ¢ € [0,27], 0 € [0, =],
and ¥ € [0,27] determined uniquely for al-
most all g [10,19]. Transitivity in this con-
text means that any point on the sphere may
be obtained from any other by a rotation. In
particular, the entire sphere is swept out by
taking all rotations of the north pole, n =
(0,0,1). It should be noted that the rotation
u(¢)a(f)u(y) with Euler angles ¢, 6, and ¥
takes the north pole to the point

w(8,¢) = (cos(¢)sin(f),sin(¢)sin(d), cos(6))

with spherical coordinates ¢ and 8. In fact, the
sphere is a quotient of the rotation group, and
inherits its natural coordinate system from
that of the group.

Fourier analysis on the sphere amounts to
the decomposition of the space of square inte-
grable functions on S? into minimal subspaces
invariant under all of the rotations in SO(3),

thus simplifying the analysis of rotation invari-
ant operators. The rotations of the sphere in-
duce operators on functions by rotating the
graphs over the sphere. Specifically, for each
rotation g € SO(3) we have the operator A(g)
defined on functions on the sphere by:

A@)f (W)= flg™lw).

The presence of the inverse is required in or-
der that the assignment A of rotations to their
associated operators on functions respects the
group law:

A(g192) = A(g1)A(g2)-

A vector subspace of functions on the sphere
is invariant if all of the operators A(g) for g €
SO(3) take each function in the space back
into the space.

The sphere admits an (essentially) unique
rotation invariant area element which is very
familiar when written out in coordinates:

2n T
/ fw)dw = / f(w(6,¢)) sinfdide.
wEeS? ¢=0J8=0
One way to see that this is rotation invariant:
[ tade= [ peiw gesom)
weES? weSs?

is to note that the usual volume element of R?
is rotation invariant, and when written in po-
lar coordinates has angular part agreeing with
the expression we have written for the sphere.
Another way to see this is pass to the quotient

from the invariant volume element on SO(3)

itself, which may be written dg = sin 8dfd¢dy
in terms of the Euler angle coordinates. We
will use this measure on SO(3) when we dis-
cuss convolution.

Like the more familiar case of periodic func-
tions on the line, or equivalently, functions
on the circle, the minimal rotationally invari-
ant subspaces are spanned by the restrictions



of homogeneous polynomials of a fixed degree
which are harmonic in the sense of being an-
nihilated by the Laplace operator. Unlike the

- circle, the sphere admits a non commutative

group of symmetries, and the invariant sub-
spaces spanned by these harmonic homoge-
neous polynomials of degree I = 0 have dimen-
sion 21 + 1 instead of being one dimensional.
The invariant subspace of degree [ harmonic
polynomials restricted to the sphere is called
the space of spherical harmonics of degree [.
Spherical harmonics of different degrees are
orthogonal to one another. Choosing an or-
thonormal basis of 2{ + 1 spherical harmonics
Y™, —1 < m < for each degree { > 0 gives
an orthonormal basis for all of L2(5?).

The Fourier decomposition of functions on
the sphere into these classical spherical har-
monics is given by

f8,0) = 20> fumyn.4) (1)
1eN |mi<I
famy = [ FY7 o, (2

The spherical harmonics Y™ are harmonic
polynomials of degree [ restricted to the
sphere. In coordinates Y;"(8, ¢) is

(211‘-1)(1—7’71)' m ime
ppry Y P (cos §)e'™®.

(=™
The associated Legendre functions are defined
as follows.

1
ﬂth(zz - 1]

T
Lo -

PJO(W)
NG
where D denotes derivative, and

PF(z)= (1 -2)*?D'P(z).
The Legendre functions satisfy the recurrence

(Il=m+ )P} (z) - (21 + Dz P™(z)+

(I+m)P2(z)=0

This will be of use later.

One may single out the Legendre polynomi-
als P, = P? which arise in the analysis of func-
tions on the sphere symmetric under rotations
about the z-axis. They may be obtained by
orthonormalizing the monomials 1, z,z%, ... on
the interval [—1,1] by the Gram-Schmidt pro-
cedure. They find many applications in other
fields ranging from data compression to opti-
mal quadrature. For this reason, fast Legen-
dre transforms should prove to have a broad
utility.

Of all the possible bases for L2(S?), the
spherical harmonics uniquely exploit the sym-
metries of the sphere. Under a rotation g, each
spherical harmonic of degree [ is transformed
into a linear combination of only those Y,
—1 < m < [ with the same degree:

AV (W)= Y Y™ (w)DRal9)

Imj<i

Thus the effect of a rotation on a function ex-
pressed in the basis of spherical harmonics is
multiplication by a semi-infinite block diago-
nal matrix, with the 2/ + 1 x 2[ + 1 blocks for
each | > 0 given by DU(g) = (Dg,),n)(g). In
technical language, this constitutes the decom-
position of the regular representation of SO(3)
on L*(5?) into irreducible subrepresentations.
For future use we note the explict expression

for DW(g) when g = k(#)a(8)k(¥):
DY, (k(9)a(9)k(v)) = e dy), (cos )™,

where the dV) are related to Jacobi polyno-
mials. [,20]. From this, one may derive the
relation between spherical harmonics and the
matrix elements :

20+1) o

Y (8,8) = \[ S Dl o(k(@)a(@Ok(¥)",



where the * denotes transpose conjugate. In
particular,

(1= m)!

d(;f‘)xo(cosﬁ) - (—-‘1)’” m

P (cos8).

The effect of all this is to block diagonalize
rotationally invariant operators; namely con-
volution operators obtained as weighted aver-
ages of the rotation operators by (generalized)
functions, or kernels. A well known example
is the Laplace-Beltrami operator on smooth
functions on S?,

1 0 6 1 &

= sm9(80(sm a6 t sin 6 92

'

)

which acts diagonally in the spherical har-
monic basis, a fact exploited in many prob-
lerns, including the quantum mechanical anal-
ysis of hydrogenic atoms. We now turn to a
more detailed analysis of convolution.

3 Convolution on §?

Each (generalized) function k on the sphere
may be used to define a convolution opera-
or. This is accomplished by employing it as
a weighting factor for the operators A induced
by the rotations of the sphere. The operator
of convolution by k is then:

([ do kama@) £ @
g€S0(3)

([ kamraie) do
gESO(3)

= k= f(w).

R f(w)

il

Here, w is any point of the sphere, and n is
the north pole. It is immediate to verify that
this sort of definition generalizes the usual one
for functions on R up to quite general spaces
admitting transitive symmetry groups.

Since the operators A(R) are simultaneously
block diagonalized for all R € SO(3) in the
spherical harmonic basis, it follows that the
convolution operators obtained as linear com-
binations of them must also be. This is the
true utility of Fourier representations. Here is
an explict statement of this well known fact.

Theorem 1 For functions f, h in L*(S?), the
transform of the convolution is a pointwise
product of the transforms:

(f *h) (1, m) = f(1,m)h(1,0)

Proof: The proof follows immediately from
interchanging the order of the transform and
convolution integrals, using invariance of the
integrals under rotations, and the expression
for the rotated spherical harmonics.

There is also an important dual convolu-
tion result relating pointwise products of func-
tions on S? to a convolution of their trans-
forms. This follows from the well known
Clebsch-Gordon decomposition of tensor prod-
ucts of representations into irreducible repre-
sentations [2)8/9]. This may be thought of as
giving the description of the algebraic (ring)
structure of the transform domain.

As any functions on 5% may be decomposed
into spherical harmonics, the description of
the transform of a product of functions follows
from the following classically known transform
of a product of spherical harmonics.

Theorem 2

my mz —
VYt =

li+1a

IO

L=lli—la] [M|<L
Ily’?yL Iy da,L

my,ma,M

The Wigner symbols C’I"‘I’"’12 o are discussed
in standard references: [2] In particular they
vanish unless my + myg = M and |l; — 3] <

L<l+1y.

211 + (2L + 1)
TCLT 1)




Proof: The proof of this, the many sym-
metries and orthogonality properties of the
Wigner coefficients, and recursive techniques
for their calculation may be found in standard
references. [£,%:9]

4 Sampling Theorems

It is often desirable to sample a band-limited
function is such a way that the original func-
tion can be exactly recovered from the sam-
ples. In the case of functions on the line the
classical sampling theorem was given by Shan-
non and states that a function of bounded fre-
quency must be sampled at a frequency at
least twice the bounding frequency. Despite
the fact that no real-life signal is band-limited
in a strong sense, this has been enormously
successful in practice and it provides the foun-
dation for the now common technology of dig-
ital audio.

While we are not aware of any sampling the-
orems for the sphere in the literature, the in-
vestigation of integration formulae has a long
history and there are relevant quadrature re-
sults on the sphere, though each has its draw-
backs. One, [13], has the unfortunate require-
ment that the function be sampled differently
for each value of m that we wish to compute
the transform f(I, m). This results in the func-
tion being significantly oversampled, even in
an asymptotic sense. Another, [8], requires
that the evaluation of each f(I,m) weight the
samples differently, thus precluding a more ef-
ficient means of computing the spherical trans-
form. In both cases, only error estimates are
determined, and no claim is made that either
exactly integrates band-limited signals.

We, however, exhibit a sampling for a band-
limited function that requires an asymptoti-
cally optimal number of samples, which can
exectly recover the sampled function. More-
over, we can efficiently and exactly compute

the transform from the sampling.

Let f(6,4) be a band-limited function such
that f(I,m) = 0 for [ > b. We will sample
the function at the equiangular grid of points
(0i,6;), 1 =0,...26 =1, j =0,...,26 = I,
where 8; = =#i/2b and ¢; = 7r]/b Define
agcb) to be the unique solution to the system
of equations

a) P (Bo) + a$P P (61) +

+a(2[;))-1 Pm(egb_l) = Cm

form = 0,...,2b ~ 1 and where ¢g = 1 and
em = 0 for m # 0. (That the solution exists
and is unique follows from the orthogonality
of the Legendre polynomials.) Multiply each
sampled point at (6;,¢;) by a(b)

This can be equivalently thought of as mul-
tiplying the function f by a weighted grid of
impulses on the sphere which we will denote
be s, the sampling function. Thus the sam-
pled function f, can be thought of as the prod-
uct f-s. We know the spectral content of f
is band-limited, and if we knew the spectral
content of s, we could determine the spectral
content of f-s = f, from the convolution the-
orem. We can easily calculate the transform
of s, and in fact $(0,0) = 1 and 5({,m) = 0
for 0 < | < 2b. Thus, from the convolution
theorem we deduce that f,(I,m) = f(I,m) for
[ <b.

In terms of computing the spherical har-
monics exactly this is precisely what we desire.
However it is possible to frame this in terms
similar to the classical sampling theorems. In
order to recover f from f, we must multiply
fo(I,m) by 1 for I < b and by 0 otherwise.
We can, by means of the convolution theorem,
pull this multipliucation back to the sphere to
arrive at the following:

Theorem 3 If f(I,m) =0 forl < band f, =
f s, where s is the weighted grid of impulses



as above, then

b1
f=Fsx Z YIO
1=0
where * denotes spherical convolution.

5 Legendre Transforms

As a first step toward developing a spherical
transform algorithm, we consider the problem
of computing the Legendre tranform of a band-
limited function over the interval [—1,1]. We
shall restrict our attention to functions that
are sampled at the n = 2% points cos(mi/n),
fort=90,...,n—1.

Lemma 1 If f(z) over the interval [=1,1] s
in the span of Pi(z), i < n/2, with z; =
cos(wj/n), and ag-") defined as in the sampling
theorem, then

ne1i

S~ al™ f(e;) Pe(z;)

i=0

flk) =

for k < n/2, and zero otherwise.

Proof: An immediate consequence of the
sampling theorem.

The naive method of computing the trans-
form is to evaluate each of the n/2 sums by
evaluating and adding n terms, which requires
O(n?) time. No asymptotically better algo-
rithm is currently known. Below, we develop
an O(n(logn)?) algorithm, for n a power of
two, which requires a preprocessed data struc-
ture. The overall plan is to first project the
function onto an exponential basis by the fast
Fourier transform. This basis is then trans-
formed into a non-orthogonal polynomial ba-
sis. Finally, this polynomial basis is tran-
formed into the Legendre basis. The new tech-
niques required by the algorithm are the use of

the intermediate basis as well as the methods
to accomplish the change efficiently. (Naively,
each change of basis takes O(n?) time.)

The intermediate transform that we will
compute Is defined as

n—1
Z agn)f(cos]‘9)((:053'6)’e

g(k) =
j=0
where § = 7/n), here and in the following.
Let w = e~**. Then w* = e~*? and w* +

w—* = 2coskf. The transform can then be
equivalently written as

n-1 ; -
sk = 3 o fleos j0)(% + Zm)*.

i=0
Let

n—1 i
n . cpw! o wT
= Z ag. )f(cosﬁ)(wj)k(—{ + —-2—-)1,
1=0
where |k| < n and 0 <! < n. Then X(0,/) =
g(!), the intermediate transform we wish to
compute. Also,

flcos jo)( )w? )k,

n=L

which can be efficiently obtained from a single
discrete Fourier transform, as shown below
Let

(n) . ;
hj) = { gj flcosjf) 0<j<n

otherwise

for j = 0,...,2n—1. Then the discrete Fourier
transform of h, F[h], gives us the vales of
X (k,0) in O(nlogn) time, since

_ [ FR)(k) 0<k<n

X(k,0) = { Flhl2n+k) 2n—1<j<0

This is because, for k >
FIRk) = 25T h(1) exp(—iki2n/2n) =



St fleosjO)(w')F = X(k,0). For k < 0
note that w* = w?*** where 2n+k is positive.
Thus F[h](2n + k) = X(k,0) by the previous
reasoning.

Our immediate goal is to compute X(0,1) =
g(l),for 1 =0,...,n—1, from the X (k,0). One
way to do this is to use the relation X(k,{) =

%X(k F1,i-1)+ -;-X(k —1,0-1)(4)

for |k <n -1

Although this allows us to compute the
values of X(k,1), for some fixed [, in terms
the X(k,! — 1), this is not immediately of
much help in that direct computation of the
X(0,1) = g(I) by this method requires 0(n?)
time.

In what follows it will be convienent to think
of X(k,1), for fixed k as a function of I, so we
will often write X ({) for X(k,1).

Let U(k) = 1/2 for |k| = 1 and zero oth-
erwise. The the relationship between X; and
X;..1 can be rewritten as

X;(/c) = [Xl—l * U](k)

where * denotes discrete convolution. If we
call the convolution of U with iteself ¢ times
U@ then by the associativity of convolution,

X11+12(k) = [Xh * U(l2)](k)

We now show how to use this equation to com-
pute X;(0) = g(I) efficiently.

Since discrete convolution of two functions
on n values can be computed by the fast
Fourier transform in O(n log n) time, X,/ can
be computed by convolving Xo, which we have
computed, with U(*/?  which we have not
(this will be adressed shortly).

The g(I) = X;(0) for I < n/2 can be com-
puted from the values of Xo. However, they
will only depend on Xo(j) for |j| < n/2 when
they are calculated by using relation 4. If

we define X/(k) to be the function X;(k) re-
stricted to the values |k| < i, then

Yn/Q -

X = X e

and similarly

Y{71/2

_ /2 n
3nj4 = X:/z DA

where U("/4) is as before, but restricted to n/2
points. Thus, in O(2(n/2)log(n/2)) steps we
can recover Xn;4(0) and Xzn/4(0), since we
must do two convolutions of discrete functions
of n/2 sampled points. By continuing in this
fashion, we can determine g({) for all / in time
proportional to

logn n n
Z 21-2—; log 5:
i=0

which is O(n(log)?).

We have omitted the computation of the
UG These are needed for all powers of 2 less
than n, and each U() is defined on 2i points.
If we know that n < N, then it suffices to com-
pute all U 25 < n. The total size of the
U®) will then be O(N). To compute these for
a single Legendre transform would increase the
asymptotic running time, so we assume that
we have precomputed these values which are
independent of the input.

It remains to transform this polynomial ba-
sis to the Legendre basis. This can be accom-
plished by repeated convolution in a manner
similar to the above, by using the fact that

(n+ DPnyi(z) = (2n+ Dz Pa(z) — nPai(2)

The details of this transformation are omitted

in this abstract.

The preceeding discussion can be summa-
rized by the following:
Lemma 2 Ifn=2% < N then

N1

fky =57 ol () Puz;)

i=0



can be computed for all k < n/2 in
O(n(logn)?) time given a precomputed data
structure of size N log N.

By using the recurrence for the associated
Legendre functions, we also obtain the more
general result:

Theorem 4 Ifn =2 < N then
n—1
fky =S alMf(z;) PP (25)
j=0
can be computed for all m < k < n/2 in
O(n(logn)?) time given a precompuled dala
structure of size Nlog N.

It is important to note that the sum in
the preceeding theorem is not claimed to be
the transform of f with respect to any fam-
ily of associated Legendre functions except for
m = 0, where the sampling theorem applies.
This, however, poses no difficulty for comput-
ing spherical transforms.

It remains to consider the problem of invert-
ing the Legendre transform. The inversion is
obtained by

n-1

=> f(R)P(2)
k=0

It is easily seen that this sum can be cal-
culated in O(n) time, and hence the function
can be recovered at the 2n sampled points in
O(n?) time. This will prove to be sufficient
for our purposes, and we know of no better
method.

6 Spherical Transforms

Suppose f(8,4) is in the span of {Y/"|l <
b/2,|m| < 1}. Then from the sampling the-
orem we know that the transform f(I,m) =
b=1b-1
S a1 (00, 610V 00, 65)
0 k=0

j=

where § = w/b and ¢ = 27/b. Rearranging we
get f(I,m) =

b—1

Clmz _’m¢’z (b/z)f bk, 0j) P" (cos by)

=0 k=0
If we take
[
gm,6; (1) = Z al’® f(Ox, 65) P (cos by

k=0

then for fixed m and j, gm ¢, is in the form of
an associated Legendre transform. Each trans-
form can be accomplished in O(b(log b)?) time,
and since each of m and j range over O(b?)
values, the total time to compute all values of
gm.p; (1) is O(b3(logb)?). It remains to com-
pute

b1

f(l,m) =Cm Ze——imqugm)m(l)

=0

This, however, consists of O(b?) sums each of
O(b) terms, which can be directly computed
in O(b%) time. Since the number of points, n,
that the functions is sampled at is O(b?), the
total time required to compute the transform
is O(n*3(log n)?). We thus have:

Theorem 5 If f(0,¢) is in the span of
(Y™l < b/2,Im| < 1}, then the spher-
ical transform of f can be computed in
O(n'®(logn)?) time from n = o), n =
2% < N, sampled points, using a preprocessed
data structure of size O(N log N).

The transform is inverted by the sum

-1 1
flox,65) = > fU,mY™(0k, ;)
O0m=-I

I=

If we rearrange and exchange sums by extend-
ing f to be 0 at inappropriate indices, we get

10



f(Okv¢]) b
b—1 ) b—1 X
g Z fl, myegm P (cosBy)
m=1—4 =0

Take g(f, m) to be the sum

b

[

t

F,m)erm P (cos 0k)
i

i
o

The O(b?) values for g can each be determined
by summing the O(b) terms, for a total of
O(b3) time. Then

b—1
FOr,0))= Y e Pig(8k,m)
m=1l-b

can be determined also by a naive summation
in O(b*) time. Therefore we conclude:

Theorem 6 If f((,m) =0 for1 > b, then
the inverse transform of f can be computed at
n = O(b?) points, n = 2, in O(n'?®) time.

Combining the previous theorems and the
convolution theorem we recover:

Theorem 7 If f and g are band-limited func-
tions on the sphere (i.e. f(l,m) and §({,m) =
0 for | > b), then f =g, the spherical
convolution of f and g can be computed in
O(n*3(logn)?) time, forn=0(b*), n = 2F <
N using a precomputed data structure of size
O(N log N).

7 Conclusion

We have given natural convolution theorems
for functions on the sphere and used these to
produce an asymptotically optimal sampling
theorem for band limited functions. These
were then applied to the problem of effi-
ciently computing spherical transforms, and

11

an O(n3(logn)?) time algorithm was give to
compute these transforms for functions sam-
pled at n = 2F points on an equiangular
grid. This improves the naive bound of O(n?y,
the best previously known algorithm. This
is then used to efficiently compute convolu-
tions of functions on the sphere, a problem for
which no exact algorithms were known. The
methods used generalize to many other related
transforms that are of wide utility.

Many tantalizing questions remain, from
which we single out a few:

e Our sampling theorem requires an asymp-
totically optimal number of sampled
points for a given band-limited function,
but is it possible to exhibit an “optimal”
sampling? That is, if a function has no
energy for [ > b, then there are at most
(b—1)(b—2)+b non-zero coeffiicents in the
transform, and we ask is there a sampling
of the function at (b — 1)(b—2) + b points
that can exactly recover the transform?
Such a sampling would make sense of a
discrete spherical transform. We suspect
that no such sampling is possible.

It is curious that we were unable to invert
the Legendre transform in better than the
naive O(n?) time, yet it was not an obsta-
cle to inverting the spherical transform.
Perhaps this could be explained by re-
lating time bounds for these problems,
or perhaps an efficient inversion can be
found.

It would, of course, be most interest-
ing to improve the O(n!®(logn)?) time
bound. We suspect that it will be diffi-
cult to break the O(n!®) barrier, because
the harmonics don’t naturally decompose
into products of functions of the coordi-
nate system (as in the case of the torus).
Perhaps a lower bound argument could



be made, or alternately, a differenct har-
monic representation on another coordi-
nate system might remove the obstacle
(though we doubt it).
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