3,081 research outputs found

    Furnace-tube contamination

    Get PDF
    Contamination in furnaces for fabricating wafers, and cleaning procedure

    Reusable Centaur study. Volume 1: Executive summary

    Get PDF
    A study of the Reusable Centaur for use as an initial upper stage with the space shuttle was conducted. The currently operative Centaur stage, with modifications for space shuttle orbiter compatibility and for improved performance, represents a cost effective development solution. The performance needs and available development funds are discussed. The main features of three Reusable Centaur configurations with increasing capability at increasing development costs are summarized

    The Honourable William F. Ryan, Q.C.

    Get PDF

    Heating of solar chromosphere by electromagnetic wave absorption in a plasma slab model

    Full text link
    The heating of solar chromospheric inter-network regions by means of the absorption of electromagnetic (EM) waves that originate from the photospheric blackbody radiation is studied in the framework of a plasma slab model. The absorption is provided by the electron-neutral collisions in which electrons oscillate in the EM wave field and electron-neutral collisions damp the EM wave. Given the uncertain nature of the collision cross-section due to the plasma micro-turbulence, it is shown that for plausible physical parameters, the heating flux produced by the absorption of EM waves in the chromosphere is between 20−4520 - 45 % of the chromospheric radiative loss flux requirement. It is also established that there is an optimal value for the collision cross-section, 5×10−185 \times 10^{-18} m2^{2}, that produces the maximal heating flux of 1990 W m−2^{-2}.Comment: Physics of Plasmas, in press, April 2011 issue (final printed version, typos in proofs corrected

    Reusable Centaur study. Volume 2: Final report

    Get PDF
    For abstract, see N74-31346

    Adenomatous Polyposis Coli Associates with the Microtubule-Destabilizing Protein XMCAK

    Get PDF
    AbstractDuring cell division, the proper formation of a bipolar spindle and its function to segregate chromosomes requires precise coordination of microtubule-stabilizing and destabilizing activities. Globally destabilized, dynamic microtubules radiating from duplicated centrosomes are locally regulated by chromosomes [1]. Proteins at the kinetochore of each sister chromatid mediate a dynamic attachment, allowing chromosome movement coupled to microtubule polymerization/depolymerization and error-correction mechanisms for improperly attached chromosomes [2]. The tumor suppressor protein adenomatous polyposis coli (APC) stabilizes microtubules both in vitro and in vivo [3–5] and is implicated in mitosis [6–9], although its mechanisms of action are not well characterized. Here, we show that in mitotic Xenopus egg extracts, the carboxyl-terminus of APC can associate with the amino terminus of the microtubule-destabilizing KinI, Xenopus mitotic centromere-associated kinesin (XMCAK) [10], in a cytoplasmic complex. We find that like XMCAK, APC can localize to the centromere as well as the kinetochore region of mitotic chromosomes and does not require microtubules for chromosomal targeting in Xenopus egg extracts. We propose that the presence of these proteins in a complex brings together both positive and negative microtubule effectors, whose opposing activities may be regulated by additional factors, thereby providing precise control of both global and local microtubule dynamics

    Simple analysis of off-axis solenoid fields using the scalar magnetostatic potential: application to a Zeeman-slower for cold atoms

    Full text link
    In a region free of currents, magnetostatics can be described by the Laplace equation of a scalar magnetic potential, and one can apply the same methods commonly used in electrostatics. Here we show how to calculate the general vector field inside a real (finite) solenoid, using only the magnitude of the field along the symmetry axis. Our method does not require integration or knowledge of the current distribution, and is presented through practical examples, including a non-uniform finite solenoid used to produce cold atomic beams via laser cooling. These examples allow educators to discuss the non-trivial calculation of fields off-axis using concepts familiar to most students, while offering the opportunity to introduce important advancements of current modern research.Comment: 6 pages. Accepted in the American Journal of Physic

    Seeking large-scale magnetic fields in a pure-disk dwarf galaxy NGC 2976

    Get PDF
    It is still unknown how magnetic field-generation mechanisms could operate in low-mass dwarf galaxies. Here, we present a detailed study of a nearby pure-disk dwarf galaxy NGC 2976. Unlike previously observed dwarf objects, this galaxy possesses a clearly defined disk. For the purpose of our studies, we performed deep multi-frequency polarimetric observations of NGC 2976 with the VLA and Effelsberg radio telescopes. Additionally, we supplement them with re-imaged data from the WSRT-SINGS survey. The magnetic field morphology discovered in NGC 2976 consists of a southern polarized ridge. This structure does not seem to be due to just a pure large-scale dynamo process (possibly cosmic-ray driven) at work in this object, as indicated by the RM data and dynamo number calculations. Instead, the field of NGC 2976 is modified by past gravitational interactions and possibly also by ram pressure inside the M 81 galaxy group environment. The estimates of total (7 muG) and ordered (3 muG) magnetic field strengths, as well as degree of field order (0.46), which is similar to those observed in spirals, suggest that tidally generated magnetized gas flows can further enhance dynamo action in the object. NGC 2976 is apparently a good candidate for the efficient magnetization of its neighbourhood. It is able to provide an ordered (perhaps also regular) magnetic field into the intergalactic space up to a distance of about 5 kpc. Tidal interactions (and possibly also ram pressure) can lead to the formation of unusual magnetic field morphologies (like polarized ridges) in galaxies out of the star-forming disks, which do not follow any observed component of the interstellar medium (ISM), as observed in NGC 2976. These galaxies are able to provide ordered magnetic fields far out of their main disks.Comment: 16 page

    On the use of low-cost computer peripherals for the assessment of motor dysfunction in Parkinson’s disease – Quantification of bradykinesia using target tracking tasks

    Get PDF
    The potential of computer games peripherals to measure the motor dysfunction in Parkinson’s diseases is assessed. Of particular interest is the quantification of bradykinesia. Previous studies used modified or custom haptic interfaces, here an unmodified force feedback joystick and steering wheel are used with a laptop. During testing an on screen cursor moves in response to movements of the peripheral, the user has to track a continuously moving target (pursuit tracking), or move to a predetermined target (step tracking). All tasks use movement in the horizontal axis, allowing use of joystick or steering wheel. Two pursuit tracking tasks are evaluated, pseudo random movement, and a swept frequency task. Two step tracking tasks are evaluated, movement between two or between two of five fixed targets. Thirteen patients and five controls took part on a weekly basis. Patients were assessed for bradykinesia at each session using standard clinical measures. A range of quantitative measures was developed to allow comparison between and within patients and controls using ANOVA. Both peripherals are capable of discriminating between controls and patients, and between patients with different levels of bradykinesia. Recommendations for test procedures and peripherals are given

    Resolved magnetic structures in the disk-halo interface of NGC 628

    Get PDF
    Magnetic fields are essential to fully understand the interstellar medium (ISM) and its role in the disk-halo interface of galaxies is still poorly understood. Star formation is known to expel hot gas vertically into the halo and these outflows have important consequences for mean-field dynamo theory in that they can be efficient in removing magnetic helicity. We perform new observations of the nearby face-on spiral galaxy NGC 628 with the Karl G. Jansky Very Large Array (JVLA) at S-band and the Effelsberg 100-m telescope at frequencies of 2.6 GHz and 8.35 GHz. We obtain some of the most sensitive radio continuum images in both total and linearly polarised intensity of any external galaxy observed so far in addition to high-quality images of Faraday depth and polarisation angle from which we obtained evidence for drivers of magnetic turbulence in the disk-halo connection. Such drivers include a superbubble detected via a significant Faraday depth gradient coinciding with a HI hole. We observe an azimuthal periodic pattern in Faraday depth with a pattern wavelength of 3.7±\pm 0.1 kpc, indicating Parker instabilities. The lack of a significant anti-correlation between Faraday depth and magnetic pitch angle indicates that these loops are vertical in nature with little helical twisting, unlike in IC 342. We find that the magnetic pitch angle is systematically larger than the morphological pitch angle of the polarisation arms which gives evidence for the action of a large-scale dynamo where the regular magnetic field is not coupled to the gas flow and obtains a significant radial component. We additionally discover a lone region of ordered magnetic field to the north of the galaxy with a high degree of polarisation and a small pitch angle, a feature that has not been observed in any other galaxy so far and is possibly caused by an asymmetric HI hole.Comment: 25 pages, Accepted for publication in Astronomy and Astrophysic
    • …
    corecore