375 research outputs found

    Evidence of traffic-related pollutant control in soil-based Sustainable Urban Drainage Systems (SUDS)

    Get PDF
    SUDS are being increasingly employed to control highway runoff and have the potential to protect groundwater and surface water quality by minimising the risks of both point and diffuse sources of pollution. While these systems are effective at retaining polluted solids by filtration and sedimentation processes, less is known of the detail of pollutant behaviour within SUDS structures. This paper reports on investigations carried out as part of a co-ordinated programme of controlled studies and field measurements at soft-engineered SUDS undertaken in the UK, observing the accumulation and behaviour of traffic-related heavy metals, oil and PAHs. The field data presented were collected from two extended detention basins serving the M74 motorway in the south-west of Scotland. Additional data were supplied from an experimental lysimeter soil core leaching study. Results show that basin design influences pollutant accumulation and behaviour in the basins. Management and/or control strategies are discussed for reducing the impact of traffic-related pollutants on the aqueous environment

    Medium-term performance and maintenance of SUDS:a case-study of Hopwood Park Motorway Service Area, UK

    Get PDF
    One of the main barriers to implementing SUDS is concern about performance and maintenance costs since there are few well-documented case-studies. This paper summarizes studies conducted between 2000 and 2008 of the performance and maintenance of four SUDS management trains constructed in 1999 at the Hopwood Park Motorway Service Area, central England. Assessments were made of the wildlife value and sedimentation in the SUDS ponds, the hydraulic performance of the coach park management train, water quality in all management trains, and soil/sediment composition in the grass filter strip, interceptor and ponds. Maintenance procedures and costs were also reviewed. Results demonstrate the benefits of a management train approach over individual SUDS units for flow attenuation, water treatment, spillage containment and maintenance. Peak flows, pond sediment depth and contaminant concentrations in sediment and water decreased through the coach park management train. Of the 2007 annual landscape budget of ÂŁ15,000 for the whole site, the maintenance costs for SUDS only accounted for ÂŁ2,500 compared to ÂŁ4,000 for conventional drainage structures. Furthermore, since sediment has been attenuated in the management trains, the cost of sediment removal after the recommended period of three years was only ÂŁ554 and, if the design is not compromised, less frequent removal will be required in future

    Why the idea of framework propositions cannot contribute to an understanding of delusions

    Get PDF
    One of the tasks that recent philosophy of psychiatry has taken upon itself is to extend the range of understanding to some of those aspects of psychopathology that Jaspers deemed beyond its limits. Given the fundamental difficulties of offering a literal interpretation of the contents of primary delusions, a number of alternative strategies have been put forward including regarding them as abnormal versions of framework propositions described by Wittgenstein in On Certainty. But although framework propositions share some of the apparent epistemic features of primary delusions, their role in partially constituting the sense of inquiry rules out their role in helping to understand delusions

    Spatial and seasonal fluxes of the greenhouse gases N2O, CO2 and CH4 in a UK macrotidal estuary

    Get PDF
    The spatial and seasonal dynamics of surface water fluxes of the greenhouse gases (GHG) CO2, CH4, and N2O were quantified in the Tay estuary, Scotland, on seven sampling occasions every 3 months during 2009/2010. This estuary is a relatively pristine river-dominated macrotidal estuary system of a type that is sparsely represented in global GHG flux studies. Significant spatial and temporal variability in GHG fluxes were measured, with similar spatial dynamics to that of other European estuaries. Greatest temporal and spatial variability in gas saturations were found for CH4, which was higher in the summer, with peaks in saturation occurring in the freshwater upper estuary and sharply decreasing in the mid-estuary mixing zone. Concentrations of CO2 and N2O were also generally higher in the upper to middle estuary in summer, although seasonality was less pronounced. Estimated air-sea fluxes also displayed significant spatial and temporal variability. Total annual CO2 emissions were greatest in the middle estuary zone (13.8 × 106 kg C yr−1), and lowest in the upper estuary (1.52 × 106 kg C yr−1). Seasonally, the highest CO2 emissions integrated across the estuary were in spring and autumn, with the lowest in winter. Total annual CH4 emissions were also highest in the middle estuary (0.05 × 106 kg C yr−1) and lowest in the upper estuary (0.01 × 106 kg C yr−1), whereas total N2O emissions, whilst highest in the middle estuary (2344 kg N yr−1), were lowest in the outer estuary (−435 kg N yr−1). Emissions of CH4 and N2O were substantially higher in the summer than any other season and lowest emissions were found in winter. The estimated annual exchange of both CO2 and N2O is substantially lower than those reported in other European macrotidal estuaries

    Carbon dioxide transport across the hillslope-riparian-stream continuum in a boreal headwater catchment

    Get PDF
    Headwater streams export CO2 as lateral downstream export and vertical evasion from the stream surface. CO2 in boreal headwater streams generally originates from adjacent terrestrial areas, so determining the sources and rate of CO2 transport along the hillslope–riparian–stream continuum could improve estimates of CO2 export via the aquatic pathway, especially by quantifying evasion at higher temporal resolutions. Continuous measurements of dissolved CO2 concentrations and water table were made along the hillslope–riparian–stream continuum in the VĂ€strabĂ€cken sub-catchment of the Krycklan catchment, Sweden. Daily water and CO2 export from the hillslope and riparian zone were estimated over one hydrological year (October 2012–September 2013) using a flow-concentration model and compared with measured lateral downstream CO2 export. Total water export over the hydrological year from the hillslope was 230 mm yr−1 compared with 270 mm yr−1 from the riparian zone. This corresponds well (proportional to the relative upslope contributing area) to the annual catchment runoff of 265 mm yr−1. Total CO2 export from the riparian zone to the stream was 3.0 g CO2-C m−2 yr−1. A hotspot for riparian CO2 export was observed at 30–50 cm depth (accounting for 71 % of total riparian export). Seasonal variability was high with export peaks during the spring flood and autumn storm events. Downstream lateral CO2 export (determined from stream water dissolved CO2 concentrations and discharge) was 1.2 g CO2-C m−2 yr−1. Subtracting downstream lateral export from riparian export (3.0 g CO2-C m−2 yr−1) gives 1.8 g CO2-C m−2 yr−1 which can be attributed to evasion losses (accounting for 60 % of export via the aquatic pathway). The results highlight the importance of terrestrial CO2 export, especially from the riparian zone, for determining catchment aquatic CO2 losses and the importance of the CO2 evasion component to carbon export via the aquatic conduit
    • 

    corecore