12,799 research outputs found
Relational Collaborative Filtering:Modeling Multiple Item Relations for Recommendation
Existing item-based collaborative filtering (ICF) methods leverage only the
relation of collaborative similarity. Nevertheless, there exist multiple
relations between items in real-world scenarios. Distinct from the
collaborative similarity that implies co-interact patterns from the user
perspective, these relations reveal fine-grained knowledge on items from
different perspectives of meta-data, functionality, etc. However, how to
incorporate multiple item relations is less explored in recommendation
research. In this work, we propose Relational Collaborative Filtering (RCF), a
general framework to exploit multiple relations between items in recommender
system. We find that both the relation type and the relation value are crucial
in inferring user preference. To this end, we develop a two-level hierarchical
attention mechanism to model user preference. The first-level attention
discriminates which types of relations are more important, and the second-level
attention considers the specific relation values to estimate the contribution
of a historical item in recommending the target item. To make the item
embeddings be reflective of the relational structure between items, we further
formulate a task to preserve the item relations, and jointly train it with the
recommendation task of preference modeling. Empirical results on two real
datasets demonstrate the strong performance of RCF. Furthermore, we also
conduct qualitative analyses to show the benefits of explanations brought by
the modeling of multiple item relations
Comment on Reparametrization Invariance of Quark-Lepton Complementarity
We study the complementarity between quark and lepton mixing angles (QLC),
the sum of an angle in quark mixing and the corresponding angle in lepton
mixing is . Experimentally in the standard PDG parametrization, two such
relations exist approximately. These QLC relations are accidental which only
manifest themselves in the PDG parametrization. We propose reparametrization
invariant expressions for the complementarity relations in terms of the
magnitude of the elements in the quark and lepton mixing matrices. In the exact
QLC limit, it is found that and . Expressions with deviations
from exact complementarity are obtained. Implications of these relations are
also discussed.Comment: 5 pages and 1 figure. Implications for recent Daya-Bay neutrino data
on theta_{13} discusse
A taxonomic, functional, and phylogenetic perspective on the community assembly of passerine birds along an elevational gradient in southwest China
Integrating multiple facets of biodiversity to describe spatial and temporal distribution patterns is one way of revealing the mechanisms driving community assembly. We assessed the species, functional, and phylogenetic composition and structure of passerine bird communities along an elevational gradient both in wintering and breeding seasons in the Ailao Mountains, southwest China, in order to identify the dominant ecological processes structuring the communities and how these processes change with elevation and season. Our research confirms that the highest taxonomic diversity, and distinct community composition, was found in the moist evergreen broadleaf forest at high elevation in both seasons. Environmental filtering was the dominant force at high elevations with relatively cold and wet climatic conditions, while the observed value of mean pairwise functional and phylogenetic distances of low elevation was constantly higher than expectation in two seasons, suggested interspecific competition could play the key role at low elevations, perhaps because of relative rich resource result from complex vegetation structure and human-induced disturbance. Across all elevations, there was a trend of decreasing intensity of environmental filtering whereas increasing interspecific competition from wintering season to breeding season. This was likely due to the increased resource availability but reproduction-associated competition in the summer months. In general, there is a clear justification for conservation efforts to protect entire elevational gradients in the Ailao Mountains, given the distinct taxonomic, functional, and phylogenetic compositions and also elevational migration pattern in passerine bird communities
Approaching Theoretical Performances of Electrocatalytic Hydrogen Peroxide Generation by Cobalt-Nitrogen Moieties
Electrocatalytic oxygen reduction reaction (ORR) has been intensively studied for environmentally benign applications. However, insufficient understanding of ORR 2 e−-pathway mechanism at the atomic level inhibits rational design of catalysts with both high activity and selectivity, causing concerns including catalyst degradation due to Fenton reaction or poor efficiency of H2O2 electrosynthesis. Herein we show that the generally accepted ORR electrocatalyst design based on a Sabatier volcano plot argument optimises activity but is unable to account for the 2 e−-pathway selectivity. Through electrochemical and operando spectroscopic studies on a series of CoNx/carbon nanotube hybrids, a construction-driven approach based on an extended “dynamic active site saturation” model that aims to create the maximum number of 2 e− ORR sites by directing the secondary ORR electron transfer towards the 2 e− intermediate is proven to be attainable by manipulating O2 hydrogenation kinetics
Irreversible proliferation of magnetic moments at cleaved surfaces of the topological Kondo insulator SmB6
The compound SmB is the best established realization of a topological
Kondo insulator, in which a topological insulator state is obtained through
Kondo coherence. Recent studies have found evidence that the surface of SmB
hosts ferromagnetic domains, creating an intrinsic platform for unidirectional
ballistic transport at the domain boundaries. Here, surface-sensitive X-ray
absorption (XAS) and bulk-sensitive resonant inelastic X-ray scattering (RIXS)
spectra are measured at the Sm N-edge, and used to evaluate electronic
symmetries, excitations and temperature dependence near the surface of cleaved
samples. The XAS data show that the density of large-moment atomic multiplet
states on a cleaved surface grows irreversibly over time, to a degree that
likely exceeds a related change that has recently been observed in the surface
4f orbital occupation
- …