15,031 research outputs found

    T2 mapping outperforms normalised FLAIR in identifying hippocampal sclerosis

    Get PDF
    Rationale Qualitatively, FLAIR MR imaging is sensitive to the detection of hippocampal sclerosis (HS). Quantitative analysis of T2 maps provides a useful objective measure and increased sensitivity over visual inspection of T2-weighted scans. We aimed to determine whether quantification of normalised FLAIR is as sensitive as T2 mapping in detection of HS. Method Dual echo T2 and FLAIR MR images were retrospectively analysed in 27 patients with histologically confirmed HS and increased T2 signal in ipsilateral hippocampus and 14 healthy controls. Regions of interest were manually segmented in all hippocampi aiming to avoid inclusion of CSF. Hippocampal T2 values and measures of normalised FLAIR Signal Intensity (nFSI) were compared in healthy and sclerotic hippocampi. Results HS was identified on T2 values with 100% sensitivity and 100% specificity. HS was identified on nFSI measures with 60% sensitivity and 93% specificity. Conclusion T2 mapping is superior to nFSI for identification of HS

    Digitaliseret 3D-print i metal åbner ny verden for industrien

    Get PDF
    The dataset presented here comprises 79 raw, unprocessed video files obtained from the high-speed schlieren imaging of acoustic waves in air, each with a corresponding metadata file. The majority of the footage was recorded at 50,000 frames per second, with each condition filmed for a duration of 20 ms. The dataset includes footage corresponding to a wide range of signals, in terms of waveform, frequency, and amplitude, as well as varied imaging parameters (exposure, frame rate, spatial resolution). This Data in Brief article is to accompany the research article “Visualization of acoustic waves in air and subsequent audio recovery with a high-speed schlieren imaging system: Experimental and computational development of a schlieren microphone” [1]

    Zero-shot keyword spotting for visual speech recognition in-the-wild

    Full text link
    Visual keyword spotting (KWS) is the problem of estimating whether a text query occurs in a given recording using only video information. This paper focuses on visual KWS for words unseen during training, a real-world, practical setting which so far has received no attention by the community. To this end, we devise an end-to-end architecture comprising (a) a state-of-the-art visual feature extractor based on spatiotemporal Residual Networks, (b) a grapheme-to-phoneme model based on sequence-to-sequence neural networks, and (c) a stack of recurrent neural networks which learn how to correlate visual features with the keyword representation. Different to prior works on KWS, which try to learn word representations merely from sequences of graphemes (i.e. letters), we propose the use of a grapheme-to-phoneme encoder-decoder model which learns how to map words to their pronunciation. We demonstrate that our system obtains very promising visual-only KWS results on the challenging LRS2 database, for keywords unseen during training. We also show that our system outperforms a baseline which addresses KWS via automatic speech recognition (ASR), while it drastically improves over other recently proposed ASR-free KWS methods.Comment: Accepted at ECCV-201

    Some triviality results for quasi-Einstein manifolds and Einstein warped products

    Full text link
    In this paper we prove a number of triviality results for Einstein warped products and quasi-Einstein manifolds using different techniques and under assumptions of various nature. In particular we obtain and exploit gradient estimates for solutions of weighted Poisson-type equations and adaptations to the weighted setting of some Liouville-type theorems.Comment: 15 pages, fixed minor mistakes in Section

    The Embryotrophic Activity of Oviductal Cell-derived Complement C3b and iC3b, a Novel Function of Complement Protein in Reproduction

    Get PDF
    The oviduct-derived embryotrophic factor, ETF-3, enhances the development of trophectoderm and the hatching process of treated embryos. Monoclonal anti-ETF-3 antibody that abolishes the embryotrophic activity of ETF-3 recognized a 115-kDa protein from the conditioned medium of immortalized human oviductal cells. Mass spectrometry analysis showed that the protein was complement C3. Western blot analysis using an antibody against C3 confirmed the cross-reactivities between anti-C3 antibody with ETF-3 and anti-ETF-3 antibody with C3 and its derivatives, C3b and iC3b. Both derivatives, but not C3, were embryotrophic. iC3b was most efficient in enhancing the development of blastocysts with larger size and higher hatching rate, consistent with the previous reported embryotrophic activity of ETF-3. Embryos treated with iC3b contained iC3b immunoreactivity. The oviductal epithelium produced C3 as evidenced by the presence of C3 immunoreactivity and mRNA in the human oviduct and cultured oviductal cells. Cyclical changes in the expression of C3 immunoreactivity and mRNA were also found in the mouse oviduct with the highest expression at the estrus stage. Molecules involving in the conversion of C3b to iC3b and binding of iC3b were present in the human oviduct (factor I) and mouse preimplantation embryo (Crry and CR3), respectively. In conclusion, the present data showed that the oviduct produced C3/C3b, which was converted to iC3b to stimulate embryo development.postprin

    Fast Ensemble Smoothing

    Full text link
    Smoothing is essential to many oceanographic, meteorological and hydrological applications. The interval smoothing problem updates all desired states within a time interval using all available observations. The fixed-lag smoothing problem updates only a fixed number of states prior to the observation at current time. The fixed-lag smoothing problem is, in general, thought to be computationally faster than a fixed-interval smoother, and can be an appropriate approximation for long interval-smoothing problems. In this paper, we use an ensemble-based approach to fixed-interval and fixed-lag smoothing, and synthesize two algorithms. The first algorithm produces a linear time solution to the interval smoothing problem with a fixed factor, and the second one produces a fixed-lag solution that is independent of the lag length. Identical-twin experiments conducted with the Lorenz-95 model show that for lag lengths approximately equal to the error doubling time, or for long intervals the proposed methods can provide significant computational savings. These results suggest that ensemble methods yield both fixed-interval and fixed-lag smoothing solutions that cost little additional effort over filtering and model propagation, in the sense that in practical ensemble application the additional increment is a small fraction of either filtering or model propagation costs. We also show that fixed-interval smoothing can perform as fast as fixed-lag smoothing and may be advantageous when memory is not an issue

    Essential requirement for JPT2 in NAADP-evoked Ca²⁺ signaling

    Get PDF
    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger that releases Ca2+ from acidic organelles through the activation of two-pore channels (TPCs) to regulate endolysosomal trafficking events. NAADP action is mediated by NAADP-binding protein(s) of unknown identity that confer NAADP sensitivity to TPCs. Here, we used a “clickable” NAADP-based photoprobe to isolate human NAADP-binding proteins and identified Jupiter microtubule-associated homolog 2 (JPT2) as a TPC accessory protein required for endogenous NAADP-evoked Ca2+ signaling. JPT2 was also required for the translocation of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus through the endolysosomal system. Thus, JPT2 is a component of the NAADP receptor complex that is essential for TPC-dependent Ca2+ signaling and control of coronaviral entry

    Measuring portfolio performance using a modified measure of risk

    Get PDF
    This paper reports the results of an investigation into the properties of a theoretical modification of beta proposed by Leland (1999) and based on earlier work of Rubinstein (1976). It is shown that when returns are elliptically symmetric, beta is the appropriate measure of risk and that there are other situations in which the modified beta will be similar to the traditional measure based on the capital asset pricing model. For the case where returns have a normal distribution, it is shown that the criterion either does not exist or reduces exactly to the conventional beta. It is therefore conjectured that the modified measure will only be useful for portfolios that have nonstandard return distributions which incorporate skewness. For such situations, it is shown how to estimate the measure using regression and how to compare the resulting statistic with a traditional estimated beta using Hotelling's test. An empirical study based on stocks from the FTSE350 does not find evidence to support the use of the new measure even in the presence of skewness.Journal of Asset Management (2007) 7, 388-403. doi:10.1057/palgrave.jam.225005
    corecore