CORE

On hybrid split problem and its nonlinear algorithms

Zhenhua He^{1} and Wei-Shih Du²*

*Correspondence:
wsdu@nknucc.nknu.edu.tw
${ }^{2}$ Department of Mathematics, National Kaohsiung Normal University, Kaohsiung, 824, Taiwan Full list of author information is available at the end of the article

Abstract

In this paper, we study a hybrid split problem (HSP for short) for equilibrium problems and fixed point problems of nonlinear operators. Some strong and weak convergence theorems are established.

MSC: 47J25; 47H09; 65K10
Keywords: fixed point problem; equilibrium problem; hybrid split problem; iterative algorithm; strong (weak) convergence theorem

1 Introduction

Throughout this paper, we assume that H is a real Hilbert space with zero vector θ, whose inner product and norm are denoted by $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$, respectively. Let C be a nonempty subset of H and $T: C \rightarrow H$ be a mapping. Denote by $\mathcal{F}(T)$ the set of fixed points of T. The symbols \mathbb{N} and \mathbb{R} are used to denote the sets of positive integers and real numbers, respectively.
Let H be a Hilbert space and C be a closed convex subset of H. Let $f: C \times C \rightarrow \mathbb{R}$ be a bi-function. The classical equilibrium problem (EP for short) is defined as follows.

$$
\begin{equation*}
\text { Find } p \in C \text { such that } f(p, y) \geq 0, \quad \forall y \in C . \tag{EP}
\end{equation*}
$$

The symbol $E P(f)$ is used to denote the set of all solutions of the problem (EP), that is,

$$
E P(f)=\{u \in K: f(u, v) \geq 0, \forall v \in K\} .
$$

It is known that the problem (EP) contains optimization problems, complementary problems, variational inequalities problems, saddle point problems, fixed point problems, bilevel problems, semi-infinite problems and others as special cases and have many applications in physics and economics problems; for detail, one can refer to [1-3] and references therein.

In last ten years or so, the problem (EP) has been generalized and improved to find a common element of the set of fixed points of a nonlinear operator and the set of solutions of the problem (EP). More precisely, many authors have studied the following problem (FTEP) (see, for instance, [4-9]):

Find $p \in C$ such that $T p=p$ and $f(p, y) \geq 0, \quad \forall y \in C$,
(FTEP)
where C is a closed convex subset of a Hilbert space $H, f: C \times C \rightarrow \mathbb{R}$ is a bi-function and $T: C \rightarrow C$ is a nonlinear operator.
In this paper, motivated by the problems (EP) and (FTEP), we study the following mathematical model about a hybrid split problem for equilibrium problems and fixed point problems of nonlinear operators (HSP for short).

Let E_{1} and E_{2} be two real Banach spaces. Let C be a closed convex subset of E_{1} and K be a closed convex subset of E_{2}. Let $f: C \times C \rightarrow \mathbb{R}$ and $g: K \times K \rightarrow \mathbb{R}$ be two bifunctions, $A: E_{1} \rightarrow E_{2}$ be a bounded linear operator. Let $T: C \rightarrow C$ and $S: K \rightarrow K$ be two nonlinear operators with $\mathcal{F}(T) \neq \emptyset$ and $\mathcal{F}(S) \neq \emptyset$. The mathematical model about a hybrid split problem for equilibrium problems and fixed point problems of nonlinear operators (HSP for short) is defined as follows:

Find $p \in C$ such that $T p=p, f(p, y) \geq 0, \quad \forall y \in C, \quad$ and
$u:=A p$ satisfying $S u=u \in K, g(u, v) \geq 0, \quad \forall v \in K$.

In fact, (HSP) contains several important problems as special cases. We give some examples to explain about it.

Example A If T is an identity operator on C, then (HSP) will reduce to the following problem (P_{1}):
$\left(\mathrm{P}_{1}\right)$ Find $p \in C$ such that $f(p, y) \geq 0, \forall y \in C$, and $u:=A p$ satisfying $S u=u \in K, g(u, v) \geq 0$, $\forall v \in K$.

Example B If S is an identity operator on K, then (HSP) will reduce to the following problem (P_{2}):
$\left(\mathrm{P}_{2}\right)$ Find $p \in C$ such that $T p=p, f(p, y) \geq 0, \forall y \in C$, and $u:=A p \in K$ satisfying $g(u, v) \geq 0$, $\forall v \in K$.

Example C If T, S are all identity operators, then (HSP) will reduce to the following split equilibrium problem $\left(\mathrm{P}_{3}\right)$ which has been considered in [10]:
$\left(\mathrm{P}_{3}\right)$ Find $p \in C$ such that $f(p, y) \geq 0, \forall y \in C$, and $u:=A p \in K$ satisfying $g(u, v) \geq 0, \forall v \in K$.

Example D If S is an identity operator and $f(x, y) \equiv 0$ for all $(x, y) \in C \times C$, then (HSP) will reduce to the following problem $\left(\mathrm{P}_{4}\right)$ which has been studied in [11]:
$\left(\mathrm{P}_{4}\right)$ Find $p \in C$ such that $T p=p$ and $u:=A p \in K$ satisfying $g(u, v) \geq 0, \forall v \in K$.

In this paper, we introduce some new iterative algorithms for (HSP) and some strong and weak convergence theorems for (HSP) will be established.

2 Preliminaries

In what follows, the symbols Δ and \rightarrow will symbolize weak convergence and strong convergence as usual, respectively. A Banach space $(X,\|\cdot\|)$ is said to satisfy Opial's condition if for each sequence $\left\{x_{n}\right\}$ in X which converges weakly to a point $x \in X$, we have

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|, \quad \forall y \in X, y \neq x .
$$

It is well known that any Hilbert space satisfies Opial's condition. Let K be a nonempty subset of real Hilbert spaces H. Recall that a mapping $T: K \rightarrow K$ is said to be nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in K$.
Let H_{1} and H_{2} be two Hilbert spaces. Let $A: H_{1} \rightarrow H_{2}$ and $B: H_{2} \rightarrow H_{1}$ be two bounded linear operators. B is called the adjoint operator (or adjoint) of A if for all $z \in H_{1}, w \in H_{2}$, B satisfies $\langle A z, w\rangle=\langle z, B w\rangle$. It is known that the adjoint operator of a bounded linear operator on a Hilbert space always exists and is bounded linear and unique. Moreover, it is not hard to show that if B is an adjoint operator of A, then $\|A\|=\|B\|$.

Example 2.1 ([10]) Let $H_{2}=\mathbb{R}$ with the standard norm $|\cdot|$ and $H_{1}=\mathbb{R}^{2}$ with the norm $\|\alpha\|=\left(a_{1}^{2}+a_{2}^{2}\right)^{\frac{1}{2}}$ for some $\alpha=\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2} .\langle x, y\rangle=x y$ denotes the inner product of H_{2} for some $x, y \in H_{2}$ and $\langle\alpha, \beta\rangle=\sum_{i=1}^{2} a_{i} b_{i}$ denotes the inner product of H_{1} for some $\alpha=$ $\left(a_{1}, a_{2}\right), \beta=\left(b_{1}, b_{2}\right) \in H_{1}$. Let $A \alpha=a_{2}-a_{1}$ for $\alpha=\left(a_{1}, a_{2}\right) \in H_{1}$ and $B x=(-x, x)$ for $x \in H_{2}$, then B is an adjoint operator of A.

Example 2.2 ([10]) Let $H_{1}=\mathbb{R}^{2}$ with the norm $\|\alpha\|=\left(a_{1}^{2}+a_{2}^{2}\right)^{\frac{1}{2}}$ for some $\alpha=\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2}$ and $H_{2}=\mathbb{R}^{3}$ with the norm $\|\gamma\|=\left(c_{1}^{2}+c_{2}^{2}+c_{3}^{2}\right)^{\frac{1}{2}}$ for some $\gamma=\left(c_{1}, c_{2}, c_{3}\right) \in \mathbb{R}^{3}$. Let $\langle\alpha, \beta\rangle=$ $\sum_{i=1}^{2} a_{i} b_{i}$ and $\langle\gamma, \eta\rangle=\sum_{i=1}^{3} c_{i} d_{i}$ denote the inner product of H_{1} and H_{2}, respectively, where $\alpha=\left(a_{1}, a_{2}\right), \beta=\left(b_{1}, b_{2}\right) \in H_{1}, \gamma=\left(c_{1}, c_{2}, c_{3}\right), \eta=\left(d_{1}, d_{2}, d_{3}\right) \in H_{2}$. Let $A \alpha=\left(a_{2}, a_{1}, a_{1}-a_{2}\right)$ for $\alpha=\left(a_{1}, a_{2}\right) \in H_{1}$ and $B \gamma=\left(c_{2}+c_{3}, c_{1}-c_{3}\right)$ for $\gamma=\left(c_{1}, c_{2}, c_{3}\right) \in H_{2}$. Obviously, B is an adjoint operator of A.

Let K be a closed convex subset of a real Hilbert space H. For each point $x \in H$, there exists a unique nearest point in K, denoted by $P_{K} x$, such that $\left\|x-P_{K} x\right\| \leq\|x-y\| \forall y \in K$. The mapping P_{K} is called the metric projection from H onto K. It is well known that P_{K} has the following characteristics:
(i) $\left\langle x-y, P_{K} x-P_{K} y\right\rangle \geq\left\|P_{K} x-P_{K} y\right\|^{2}$ for every $x, y \in H$;
(ii) for $x \in H$ and $z \in K, z=P_{K}(x) \Leftrightarrow\langle x-z, z-y\rangle \geq 0, \forall y \in K$;
(iii) for $x \in H$ and $y \in K$,

$$
\begin{equation*}
\left\|y-P_{K}(x)\right\|^{2}+\left\|x-P_{K}(x)\right\|^{2} \leq\|x-y\|^{2} . \tag{2.1}
\end{equation*}
$$

Lemma 2.1 (see [1]) Let K be a nonempty closed convex subset of H and F be a bi-function of $K \times K$ into \mathbb{R} satisfying the following conditions:
(A1) $F(x, x)=0$ for all $x \in K$;
(A2) F is monotone, that is, $F(x, y)+F(y, x) \leq 0$ for all $x, y \in K$;
(A3) for each $x, y, z \in K, \lim \sup _{t \downarrow 0} F(t z+(1-t) x, y) \leq F(x, y)$;
(A4) for each $x \in K, y \mapsto F(x, y)$ is convex and lower semi-continuous.
Let $r>0$ and $x \in H$. Then there exists $z \in K$ such that $F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0$ for all $y \in K$.

Lemma 2.2 (see [12]) Let K be a nonempty closed convex subset of H and let F be a bifunction of $K \times K$ into \mathbb{R} satisfying (A1)-(A4). For $r>0$, define a mapping $T_{r}^{F}: H \rightarrow K$ as follows:

$$
\begin{equation*}
T_{r}^{F}(x)=\left\{z \in K: F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \forall y \in K\right\} \tag{2.2}
\end{equation*}
$$

for all $x \in H$. Then the following hold:
(i) T_{r}^{F} is single-valued and $\mathcal{F}\left(T_{r}^{F}\right)=E P(F)$ for $\forall r>0$ and $E P(F)$ is closed and convex;
(ii) T_{r}^{F} is firmly non-expansive, that is, for any $x, y \in H$, $\left\|T_{r}^{F} x-T_{r}^{F} y\right\|^{2} \leq\left\langle T_{r}^{F} x-T_{r}^{F} y, x-y\right\rangle$.

Lemma 2.3 (see, e.g., [6]) Let H be a real Hilbert space. Then the following hold:
(a) $\|x+y\|^{2} \leq\|y\|^{2}+2\langle x, x+y\rangle$;
(b) $\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}-2\langle x, y\rangle$ for all $x, y \in H$;
(c) $\|\alpha x+(1-\alpha) y\|^{2}=\alpha\|x\|^{2}+(1-\alpha)\|y\|^{2}-\alpha(1-\alpha)\|x-y\|^{2}$ for all $x, y \in H$ and $\alpha \in[0,1]$.

Lemma 2.4 Let F_{r}^{F} be the same as in Lemma 2.2. If $\mathcal{F}\left(T_{r}^{F}\right)=E P(F) \neq \emptyset$, then for any $x \in H$ and $x^{*} \in \mathcal{F}\left(T_{r}^{F}\right),\left\|T_{r}^{F} x-x\right\|^{2} \leq\left\|x-x^{*}\right\|^{2}-\left\|T_{r}^{F} x-x^{*}\right\|^{2}$.

Proof By (ii) of Lemma 2.2 and (b) of Lemma 2.3,

$$
\left\|T_{r}^{F} x-x^{*}\right\|^{2} \leq\left\langle T_{r}^{F} x-x^{*}, x-x^{*}\right\rangle=\frac{1}{2}\left(\left\|T_{r}^{F} x-x^{*}\right\|^{2}+\left\|x-x^{*}\right\|^{2}-\left\|T_{r}^{F} x-x\right\|^{2}\right)
$$

which shows that $\left\|T_{r}^{F} x-x\right\|^{2} \leq\left\|x-x^{*}\right\|^{2}-\left\|T_{r}^{F} x-x^{*}\right\|^{2}$.

Lemma $2.5([10,11])$ Let the mapping T_{r}^{F} be defined as in Lemma 2.2. Then, for $r, s>0$ and $x, y \in H$,

$$
\left\|T_{r}^{F}(x)-T_{s}^{F}(y)\right\| \leq\|x-y\|+\frac{|s-r|}{s}\left\|T_{s}^{F}(y)-y\right\|
$$

In particular, $\left\|T_{r}^{F}(x)-T_{r}^{F}(y)\right\| \leq\|x-y\|$ for any $r>0$ and $x, y \in H$, that is, T_{r}^{F} is nonexpansive for any $r>0$.

Remark 2.1 In fact, Lemma 2.5 is motivated by a proof of [5, Theorem 3.2]. In order to the sake of convenience for proving, we restated the fact and gave its proof in Lemma 2.5 [10, 11].

Lemma 2.6 ([13]) Let $\left\{a_{n}\right\}$ be a nonnegative real sequence satisfying the following condition:

$$
a_{n+1} \leq\left(1-\lambda_{n}\right) a_{n}+\lambda_{n} b_{n}, \quad \forall n \geq n_{0}
$$

where n_{0} is some nonnegative integer, $\left\{\lambda_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{b_{n}\right\}$ is a sequence in \mathbf{R} such that
(i) $\sum_{n=0}^{\infty} \lambda_{n}=\infty$;
(ii) $\lim \sup _{n \rightarrow \infty} b_{n} \leq 0$ or $\sum_{n=0}^{\infty} \lambda_{n} b_{n}$ is convergent. Then $\lim _{n \rightarrow \infty} a_{n}=0$.

Lemma 2.7 ([14]) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Banach space E and let $\left\{\beta_{n}\right\}$ be a sequence in $[0,1]$ with $0<\liminf \beta_{n} \leq \limsup \beta_{n}<1$. Suppose $x_{n+1}=\beta_{n} y_{n}+\left(1-\beta_{n}\right) x_{n}$ for all integers $n \geq 0$ and $\lim \sup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0$, then $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$.

3 Weak convergence iterative algorithms for (HSP)

In this section, we will introduce some weak convergence iterative algorithms for the hybrid split problem.

Theorem 3.1 Let H_{1} and H_{2} be two real Hilbert spaces. Let $C \subset H_{1}$ and $K \subset H_{2}$ be two nonempty closed convex sets. Let $T: C \rightarrow C$ and $S: K \rightarrow K$ be non-expansive mappings and $: C \times C \rightarrow \mathbb{R}$ and $g: K \times K \rightarrow \mathbb{R}$ be bi-functions satisfying the conditions (A1)-(A4). Let A : $H_{1} \rightarrow H_{2}$ be a bounded linear operator with its adjoint B. Let $x_{1} \in C,\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by

$$
\left\{\begin{array}{l}
u_{n}=T_{r_{n}}^{f} x_{n}, \tag{3.1}\\
y_{n}=(1-\alpha) u_{n}+\alpha T u_{n}, \\
w_{n}=T_{r_{n}}^{g} A y_{n}, \\
x_{n+1}=P_{C}\left(y_{n}+\xi B\left(S w_{n}-A y_{n}\right)\right), \quad \forall n \in \mathbb{N},
\end{array}\right.
$$

where $\alpha \in(0,1), \xi \in\left(0, \frac{1}{\|B\|^{2}}\right)$ and $\left\{r_{n}\right\} \subset(0,+\infty)$ with $\liminf _{n \rightarrow+\infty} r_{n}>0, P_{C}$ is a projection operator from H_{1} into C. Suppose that $\Omega=\{p \in \mathcal{F}(T) \cap E P(f): A p \in \mathcal{F}(S) \cap E P(g)\} \neq \emptyset$, then $x_{n}, u_{n} \rightharpoonup q \in \Omega$ and $w_{n} \rightharpoonup A q \in \mathcal{F}(S) \cap E P(g)$.

Proof Let $p \in \Omega$, the following several inequalities can be proved easily:

$$
\begin{equation*}
\left\|y_{n}-p\right\| \leq\left\|u_{n}-p\right\| \leq\left\|x_{n}-p\right\|, \quad\left\|w_{n}-A p\right\| \leq\left\|A y_{n}-A p\right\| . \tag{3.2}
\end{equation*}
$$

By Lemma 2.4, $\left\|T_{r_{n}}^{g} A y_{n}-A y_{n}\right\|^{2} \leq\left\|A y_{n}-A p\right\|^{2}-\left\|T_{r_{n}}^{g} A y_{n}-A p\right\|^{2}$, hence

$$
\begin{align*}
\left\|S w_{n}-A p\right\|^{2} & =\left\|S T_{r_{n}}^{g} A y_{n}-A p\right\|^{2} \leq\left\|T_{r_{n}}^{g} A y_{n}-A p\right\|^{2} \\
& \leq\left\|A y_{n}-A p\right\|^{2}-\left\|T_{r_{n}}^{g} A y_{n}-A y_{n}\right\|^{2} . \tag{3.3}
\end{align*}
$$

By (b) of Lemma 2.3 and (3.3), for each $n \in \mathbb{N}$, we have

$$
\begin{align*}
2 \xi & \left\langle y_{n}-p, B\left(S T_{r_{n}}^{g}-I\right) A y_{n}\right\rangle \\
= & 2 \xi\left\langle A\left(y_{n}-p\right)+\left(S T_{r_{n}}^{g}-I\right) A y_{n}-\left(S T_{r_{n}}^{g}-I\right) A y_{n},\left(S T_{r_{n}}^{g}-I\right) A y_{n}\right\rangle \\
= & 2 \xi\left(\frac{1}{2}\left\|S T_{r_{n}}^{g} A y_{n}-A p\right\|^{2}+\frac{1}{2}\left\|\left(S T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2}\right. \\
& \left.-\frac{1}{2}\left\|A y_{n}-A p\right\|^{2}-\left\|\left(S T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2}\right) \\
\leq & 2 \xi\left(-\frac{1}{2}\left\|T_{r_{n}}^{g} A y_{n}-A y_{n}\right\|^{2}+\frac{1}{2}\left\|\left(S T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2}-\left\|\left(S T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2}\right) \\
= & -\xi\left\|\left(S T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2}-\xi\left\|T_{r_{n}}^{g} A y_{n}-A y_{n}\right\|^{2} . \tag{3.4}
\end{align*}
$$

On the other hand, $\left\|B\left(S T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2} \leq\|B\|^{2}\left\|\left(S T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2}$, so from (3.1)-(3.4), we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} & =\left\|P_{C}\left(y_{n}+\xi B\left(S T_{r_{n}}^{g}-I\right) A y_{n}\right)-p\right\|^{2} \leq\left\|y_{n}+\xi B\left(S T_{r_{n}}^{g}-I\right) A y_{n}-p\right\|^{2} \\
& =\left\|y_{n}-p\right\|^{2}+\left\|\xi B\left(S T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2}+2 \xi\left(y_{n}-p, B\left(S T_{r_{n}}^{g}-I\right) A y_{n}\right\rangle
\end{aligned}
$$

$$
\begin{align*}
\leq & \left\|y_{n}-p\right\|^{2}+\xi^{2}\|B\|^{2}\left\|\left(S T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2}-\xi\left\|\left(S T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2} \\
& -\xi\left\|\left(T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2} \\
= & \left\|y_{n}-p\right\|^{2}-\xi\left(1-\xi\|B\|^{2}\right)\left\|\left(S T_{r_{n}}^{f}-I\right) A y_{n}\right\|^{2}-\xi\left\|\left(T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2} \\
\leq & \left\|x_{n}-p\right\|^{2}-\xi\left(1-\xi\|B\|^{2}\right)\left\|\left(S T_{r_{n}}^{f}-I\right) A y_{n}\right\|^{2}-\xi\left\|\left(T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2} . \tag{3.5}
\end{align*}
$$

Since $\xi \in\left(0, \frac{1}{\|B\|^{2}}\right), \xi\left(1-\xi\|B\|^{2}\right)>0$, by (3.2) and (3.5), we have

$$
\begin{equation*}
\left\|x_{n+1}-p\right\| \leq\left\|y_{n}-p\right\| \leq\left\|u_{n}-p\right\| \leq\left\|x_{n}-p\right\| \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi\left(1-\xi\|B\|^{2}\right)\left\|\left(S T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2}+\xi\left\|\left(T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2} \tag{3.7}
\end{equation*}
$$

The inequality (3.6) implies $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists. Further, from (3.6) and (3.7), we get

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|=\lim _{n \rightarrow \infty}\left\|y_{n}-p\right\|=\lim _{n \rightarrow \infty}\left\|u_{n}-p\right\| \tag{3.8}\\
& \lim _{n \rightarrow \infty}\left\|\left(S T_{r_{n}}^{g}-I\right) A y_{n}\right\|=\lim _{n \rightarrow \infty}\left\|\left(T_{r_{n}}^{g}-I\right) A y_{n}\right\|=\lim _{n \rightarrow \infty}\left\|w_{n}-A y_{n}\right\|=0
\end{align*}
$$

The inequality (3.8) also implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S w_{n}-w_{n}\right\|=0 \tag{3.9}
\end{equation*}
$$

Using Lemma 2.4 and (3.8), we have

$$
\begin{align*}
\left\|u_{n}-x_{n}\right\|^{2} & =\left\|T_{r_{n}}^{f} x_{n}-x_{n}\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-\left\|T_{r_{n}}^{f} x_{n}-p\right\|^{2} \\
& =\left\|x_{n}-p\right\|^{2}-\left\|u_{n}-p\right\|^{2} \rightarrow 0 . \tag{3.10}
\end{align*}
$$

Notice that

$$
\begin{aligned}
\left\|y_{n}-p\right\|^{2} & =(1-\alpha)\left\|u_{n}-p\right\|^{2}+\alpha\left\|T u_{n}-p\right\|^{2}-\alpha(1-\alpha)\left\|T u_{n}-u_{n}\right\|^{2} \\
& \leq\left\|u_{n}-p\right\|^{2}-\alpha(1-\alpha)\left\|T u_{n}-u_{n}\right\|^{2},
\end{aligned}
$$

hence,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T u_{n}-u_{n}\right\|=0 \tag{3.11}
\end{equation*}
$$

From (3.10) and (3.11), we also have

$$
\begin{align*}
\left\|y_{n}-x_{n}\right\| & \leq\left\|y_{n}-u_{n}\right\|+\left\|u_{n}-x_{n}\right\| \\
& =\alpha\left\|T u_{n}-u_{n}\right\|+\left\|u_{n}-x_{n}\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty . \tag{3.12}
\end{align*}
$$

The existence of $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ implies that $\left\{x_{n}\right\}$ is bounded, hence $\left\{x_{n}\right\}$ has a weak convergence subsequence $\left\{x_{n_{j}}\right\}$. Assume that $x_{n_{j}} \rightharpoonup q$ for some $q \in C$, then $y_{n_{j}} \rightharpoonup q, A y_{n_{j}} \rightharpoonup$ $A q \in K$ and $w_{n_{j}}=T_{r_{n_{j}}}^{g} A y_{n_{j}} \rightharpoonup A q$ by (3.12) and (3.8).

We say $q \in \Omega$, in other words, $q \in \mathcal{F}(T) \cap E P(f)$ and $A q \in \mathcal{F}(S) \cap E P(g)$. By (3.10), we also obtain $u_{n_{j}} \rightharpoonup q$. If $T q \neq q$, then, by Opial's condition and (3.11), we get

$$
\begin{aligned}
\liminf _{j \rightarrow \infty}\left\|u_{n_{j}}-q\right\| & <\liminf _{j \rightarrow \infty}\left\|u_{n_{j}}-T q\right\| \\
& \leq \liminf _{j \rightarrow \infty}\left\|u_{n_{j}}-T u_{n_{j}}+T u_{n_{j}}-T q\right\| \\
& \leq \liminf _{j \rightarrow \infty}\left\|u_{n_{j}}-q\right\|,
\end{aligned}
$$

which is a contradiction. Hence $T q=q$ or $q \in \mathcal{F}(T)$. On the other hand, from Lemma 2.2, we know $E P(f)=\mathcal{F}\left(T_{r}^{f}\right)$ for any $r>0$. Hence, if $T_{r}^{f} q \neq q$ for $r>0$, then by Opial's condition and (3.10) and Lemma 2.5, we have

$$
\begin{aligned}
\liminf _{j \rightarrow \infty}\left\|x_{n_{j}}-q\right\| & <\liminf _{j \rightarrow \infty}\left\|x_{n_{j}}-T_{r}^{f} q\right\| \\
& =\liminf _{j \rightarrow \infty}\left\|x_{n_{j}}-T_{r_{n_{j}}}^{f} x_{n_{j}}+T_{r_{n_{j}}}^{f} x_{n_{j}}-T_{r}^{f} q\right\| \\
& \leq \liminf _{j \rightarrow \infty}^{f}\left\{\left\|x_{n_{j}}-T_{r_{n_{j}}}^{f} x_{n_{j}}\right\|+\left\|T_{r}^{f} q-T_{r_{n_{j}}}^{f} x_{n_{j}}\right\|\right\} \\
& \leq \liminf _{j \rightarrow \infty}\left\{\left\|x_{n_{j}}-T_{r_{n_{j}}}^{f} x_{n_{j}}\right\|+\left\|x_{n_{j}}-q\right\|+\frac{\left|r-r_{n_{j}}\right|}{r_{n_{j}}}\left\|T_{r_{n_{j}}}^{f} x_{n_{j}}-x_{n_{j}}\right\|\right\} \\
& =\liminf _{j \rightarrow \infty}\left\|x_{n_{j}}-q\right\|,
\end{aligned}
$$

which is also a contradiction. So, for each $r>0, T_{r}^{f} q=q$, namely $q \in E P(f)$. Thus, we have proved $q \in \mathcal{F}(T) \cap E P(f)$. Similarly, we can also prove $A q \in \mathcal{F}(S) \cap E P(g)$. Hence, $q \in \Omega$.

Finally, we prove $\left\{x_{n}\right\}$ converges weakly to $q \in \Omega$. Otherwise, if there exists another subsequence of $\left\{x_{n}\right\}$, which is denoted by $\left\{x_{n_{l}}\right\}$, such that $x_{n_{l}} \rightharpoonup \bar{x} \in \Omega$ with $\bar{x} \neq q$, then by Opial's condition,

$$
\liminf _{l \rightarrow \infty}\left\|x_{n_{l}}-\bar{x}\right\|<\liminf _{l \rightarrow \infty}\left\|x_{n_{l}}-q\right\|=\liminf _{j \rightarrow \infty}\left\|x_{n_{j}}-q\right\|<\liminf _{l \rightarrow \infty}\left\|x_{n_{l}}-\bar{x}\right\| .
$$

This is a contradiction. Hence $\left\{x_{n}\right\}$ converges weakly to an element $q \in \Omega$. Together with $\left\|u_{n}-x_{n}\right\| \rightarrow 0$ (see (3.10)), we also get $u_{n} \rightharpoonup q$.

Finally, we prove $\left\{w_{n}=T_{r_{n}}^{g} A y_{n}\right\}$ converges weakly to $A q \in \mathcal{F}(S) \cap E P(g)$. From (3.12), we have $y_{n} \rightharpoonup q$, so $A y_{n} \rightharpoonup A q$. Thus, from (3.8) we have $w_{n}=T_{r_{n}}^{g} A y_{n} \rightharpoonup A q \in \mathcal{F}(S) \cap E P(g)$. The proof is completed.

If $T=I$ or $S=I$, where I denotes an identity operator, then the following corollaries follow from Theorem 3.1.

Corollary 3.1 Let H_{1} and H_{2} be two real Hilbert spaces. Let $C \subset H_{1}$ and $K \subset H_{2}$ be two nonempty closed convex sets. Let $S: K \rightarrow K$ be a non-expansive mapping and $f: C \times C \rightarrow \mathbb{R}$ and $g: K \times K \rightarrow \mathbb{R}$ be bi-functions satisfying the conditions (A1)-(A4). Let $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator with its adjoint B. Let $x_{1} \in C,\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated
by

$$
\left\{\begin{array}{l}
u_{n}=T_{r_{n}}^{f} x_{n}, \\
w_{n}=T_{r_{n}}^{g} A u_{n}, \\
x_{n+1}=P_{C}\left(u_{n}+\xi B\left(S w_{n}-A u_{n}\right)\right), \quad \forall n \in \mathbb{N},
\end{array}\right.
$$

where $\xi \in\left(0, \frac{1}{\|B\|^{2}}\right)$ and $\left\{r_{n}\right\} \subset(0,+\infty)$ with $\liminf _{n \rightarrow+\infty} r_{n}>0, P_{C}$ is a projection operator from H_{1} into C. Suppose that $\Omega=\{p \in E P(f): A p \in \mathcal{F}(S) \cap E P(g)\} \neq \emptyset$, then $x_{n}, u_{n} \rightharpoonup q \in \Omega$ and $w_{n} \rightharpoonup A q \in \mathcal{F}(S) \cap E P(g)$.

Corollary 3.2 Let H_{1} and H_{2} be two real Hilbert spaces. Let $C \subset H_{1}$ and $K \subset H_{2}$ be two nonempty closed convex sets. Let $T: C \rightarrow C$ be a non-expansive mapping and $f: C \times C \rightarrow$ \mathbb{R} and $g: K \times K \rightarrow \mathbb{R}$ be bi-functions satisfying the conditions (A1)-(A4). Let $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator with its adjoint B. Let $x_{1} \in C,\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by

$$
\left\{\begin{array}{l}
u_{n}=T_{n_{n}}^{f} x_{n}, \\
y_{n}=(1-\alpha) u_{n}+\alpha T u_{n}, \\
w_{n}=T_{r_{n}}^{g} A y_{n}, \\
x_{n+1}=P_{C}\left(y_{n}+\xi B\left(w_{n}-A y_{n}\right)\right), \quad \forall n \in \mathbb{N},
\end{array}\right.
$$

where $\alpha \in(0,1), \xi \in\left(0, \frac{1}{\|B\|^{2}}\right)$ and $\left\{r_{n}\right\} \subset(0,+\infty)$ with $\liminf _{n \rightarrow+\infty} r_{n}>0, P_{C}$ is a projection operator from H_{1} into C. Suppose that $\Omega=\{p \in \mathcal{F}(T) \cap E P(f): A p \in E P(g)\} \neq \emptyset$, then $x_{n}, u_{n} \rightharpoonup q \in \Omega$ and $w_{n} \rightharpoonup A q \in E P(g)$.

Corollary 3.3 Let $C \subset H_{1}$ and $K \subset H_{2}$ be two nonempty closed convex sets. Letf : $C \times C \rightarrow$ \mathbb{R} and $g: K \times K \rightarrow \mathbb{R}$ be bi-functions satisfying the conditions (A1)-(A4). Let A: $H_{1} \rightarrow H_{2}$ be a bounded linear operator with its adjoint B. Let $x_{1} \in C,\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by

$$
\left\{\begin{array}{l}
u_{n}=T_{r_{n}}^{f} x_{n}, \\
w_{n}=T_{r_{n}}^{g} A u_{n}, \\
x_{n+1}=P_{C}\left(u_{n}+\xi B\left(w_{n}-A u_{n}\right)\right), \quad \forall n \in \mathbb{N},
\end{array}\right.
$$

where $\xi \in\left(0, \frac{1}{\|B\|^{2}}\right)$ and $\left\{r_{n}\right\} \subset(0,+\infty)$ with $\liminf _{n \rightarrow+\infty} r_{n}>0, P_{C}$ is a projection operator from H_{1} into C. Suppose that $\Omega=\{p \in E P(f): A p \in E P(g)\} \neq \emptyset$, then $x_{n}, u_{n} \rightharpoonup q \in \Omega$ and $w_{n} \rightharpoonup A q \in E P(g)$.

4 Strong convergence iterative algorithms for (HSP)

In this section, we introduce two strong convergence algorithms for (HSP); see Theorem 4.1 and Theorem 4.2.

Theorem 4.1 Let H_{1} and H_{2} be two real Hilbert spaces. Let $C \subset H_{1}$ and $K \subset H_{2}$ be two nonempty closed convex sets. Let $T: C \rightarrow C$ and $S: K \rightarrow K$ be non-expansive mappings
and $f: C \times C \rightarrow \mathbb{R}$ and $g: K \times K \rightarrow \mathbb{R}$ be bi-functions satisfying the conditions (A1)-(A4). Let $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator with its adjoint B. Let $x_{1} \in C_{1}:=C,\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by

$$
\left\{\begin{array}{l}
u_{n}=T_{r_{n}}^{f} x_{n}, \tag{4.1}\\
y_{n}=(1-\alpha) u_{n}+\alpha T u_{n}, \\
w_{n}=T_{r_{n}}^{g} A y_{n}, \\
z_{n}=P_{C}\left(y_{n}+\xi B\left(S w_{n}-A y_{n}\right)\right), \\
C_{n+1}=\left\{v \in C_{n}:\left\|z_{n}-v\right\| \leq\left\|y_{n}-v\right\| \leq\left\|x_{n}-v\right\|\right\}, \\
x_{n+1}=P_{C_{n+1}}\left(x_{1}\right), \quad n \in \mathbb{N},
\end{array}\right.
$$

where $\alpha \in(0,1), \xi \in\left(0, \frac{1}{\|B\|^{2}}\right)$ and $\left\{r_{n}\right\} \subset(0,+\infty)$ with $\liminf _{n \rightarrow+\infty} r_{n}>0, P_{C}$ is a projection operator from H_{1} into C. Suppose that $\Omega=\{p \in \mathcal{F}(T) \cap E P(f): A p \in \mathcal{F}(S) \cap E P(g)\} \neq \emptyset$, then $x_{n}, u_{n} \rightarrow q \in \Omega$ and $w_{n} \rightarrow A q \in \mathcal{F}(S) \cap E P(g)$.

Proof We claim that C_{n} is a nonempty closed convex set for $n \in \mathbb{N}$. In fact, let $p \in \Omega$, it follows from (3.4) that

$$
\begin{equation*}
2 \xi\left\langle y_{n}-p, B\left(S w_{n}-A y_{n}\right)\right\rangle \leq-\xi\left\|\left(T_{r_{n}}^{g}-I\right) A x_{n}\right\|^{2}-\xi\left\|S w_{n}-A y_{n}\right\|^{2} \tag{4.2}
\end{equation*}
$$

By (3.2), (4.1) and (4.2), we obtain

$$
\begin{align*}
\left\|z_{n}-p\right\|^{2} \leq & \left\|y_{n}+\xi B\left(S w_{n}-A y_{n}\right)-p\right\|^{2} \\
= & \left\|y_{n}-p\right\|^{2}+\left\|\xi B\left(S w_{n}-A y_{n}\right)\right\|^{2}+2 \xi\left(y_{n}-p, B\left(S w_{n}-A y_{n}\right)\right\rangle \\
\leq & \left\|y_{n}-p\right\|^{2}+\xi^{2}\|B\|^{2}\left\|S w_{n}-A y_{n}\right\|^{2}-\xi\left\|\left(T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2}-\xi\left\|S w_{n}-A y_{n}\right\|^{2} \\
= & \left\|y_{n}-p\right\|^{2}-\xi\left(1-\xi\|B\|^{2}\right)\left\|\left(S T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2}-\xi\left\|\left(T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2} \\
\leq & \left\|u_{n}-p\right\|^{2}-(1-\alpha) \alpha\left\|u_{n}-T u_{n}\right\|^{2} \\
& -\xi\left(1-\xi\|B\|^{2}\right)\left\|\left(S T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2}-\xi\left\|\left(T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2} \\
\leq & \left\|x_{n}-p\right\|^{2}-\xi\left(1-\xi\|B\|^{2}\right)\left\|\left(S T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2} \\
& -\xi\left\|\left(T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2}-(1-\alpha) \alpha\left\|u_{n}-T u_{n}\right\|^{2} . \tag{4.3}
\end{align*}
$$

Notice $\xi \in\left(0, \frac{1}{\|B\|^{2}}\right), \xi\left(1-\xi\|B\|^{2}\right)>0$. It follows from (4.3) that

$$
\left\|z_{n}-p\right\| \leq\left\|y_{n}-p\right\| \leq\left\|u_{n}-p\right\| \leq\left\|x_{n}-p\right\| \quad \text { for all } n \in \mathbb{N},
$$

hence $p \in C_{n}$, which yields that $\Omega \subset C_{n}$ and $C_{n} \neq \emptyset$ for $n \in \mathbb{N}$.
It is not hard to verify that C_{n} is closed for $n \in \mathbb{N}$, so it suffices to verify C_{n} is convex for $n \in \mathbb{N}$. Indeed, let $w_{1}, w_{2} \in C_{n+1}$ and $\gamma \in[0,1]$, we have

$$
\begin{aligned}
& \left\|z_{n}-\left(\gamma w_{1}+(1-\gamma) w_{2}\right)\right\|^{2} \\
& \quad=\left\|\gamma\left(z_{n}-w_{1}\right)+(1-\gamma)\left(z_{n}-w_{2}\right)\right\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\gamma\left\|z_{n}-w_{1}\right\|^{2}+(1-\gamma)\left\|z_{n}-w_{2}\right\|^{2}-\gamma(1-\gamma)\left\|w_{1}-w_{2}\right\|^{2} \\
& \leq \gamma\left\|y_{n}-w_{1}\right\|^{2}+(1-\gamma)\left\|y_{n}-w_{2}\right\|^{2}-\gamma(1-\gamma)\left\|w_{1}-w_{2}\right\|^{2} \\
& =\left\|y_{n}-\left(\gamma w_{1}+(1-\gamma) w_{2}\right)\right\|^{2},
\end{aligned}
$$

namely $\left\|z_{n}-\left(\gamma w_{1}+(1-\gamma) w_{2}\right)\right\| \leq\left\|y_{n}-\left(\gamma w_{1}+(1-\gamma) w_{2}\right)\right\|$. Similarly, $\| y_{n}-\left(\gamma w_{1}+(1-\right.$ $\left.\gamma) w_{2}\right)\|\leq\| x_{n}-\left(\gamma w_{1}+(1-\gamma) w_{2}\right) \|$, which implies $\gamma w_{1}+(1-\gamma) w_{2} \in C_{n+1}$ and C_{n+1} is a convex set, $n \in \mathbb{N}$.
Notice that $C_{n+1} \subset C_{n}$ and $x_{n+1}=P_{C_{n+1}}\left(x_{1}\right) \subset C_{n}$, then $\left\|x_{n+1}-x_{1}\right\| \leq\left\|x_{n}-x_{1}\right\|$ for $n>1$. It follows that $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{1}\right\|$ exists. Hence $\left\{x_{n}\right\}$ is bounded, which yields that $\left\{z_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded. For some $k, n \in \mathbb{N}$ with $k>n>1$, from $x_{k}=P_{C_{k}}\left(x_{1}\right) \subset C_{n}$ and (2.1), we have

$$
\begin{align*}
\left\|x_{n}-x_{k}\right\|^{2}+\left\|x_{1}-x_{k}\right\|^{2} & =\left\|x_{n}-P_{C_{k}}\left(x_{1}\right)\right\|^{2}+\left\|x_{1}-P_{C_{k}}\left(x_{1}\right)\right\|^{2} \\
& \leq\left\|x_{n}-x_{1}\right\|^{2} . \tag{4.4}
\end{align*}
$$

By $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{1}\right\|$ exists and (4.4), we have $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{k}\right\|=0$, so $\left\{x_{n}\right\}$ is a Cauchy sequence.
Let $x_{n} \rightarrow q$, then $q \in \Omega$. Firstly, by $x_{n+1}=P_{C_{n+1}}\left(x_{1}\right) \in C_{n+1} \subset C_{n}$, from (4.1) we have

$$
\begin{align*}
& \left\|z_{n}-x_{n}\right\| \leq\left\|z_{n}-x_{n+1}\right\|+\left\|x_{n+1}-x_{n}\right\| \leq 2\left\|x_{n+1}-x_{n}\right\| \rightarrow 0, \\
& \left\|y_{n}-x_{n}\right\| \leq\left\|y_{n}-x_{n+1}\right\|+\left\|x_{n+1}-x_{n}\right\| \leq 2\left\|x_{n+1}-x_{n}\right\| \rightarrow 0 \tag{4.5}
\end{align*}
$$

Setting $\rho=\xi\left(1-\xi\|B\|^{2}\right)$, by (4.3) again, we have

$$
\begin{align*}
& \rho\left\|\left(S T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2}+\xi\left\|\left(T_{r_{n}}^{g}-I\right) A y_{n}\right\|^{2}+(1-\alpha) \alpha\left\|u_{n}-T u_{n}\right\|^{2} \\
& \quad \leq\left\|x_{n}-p\right\|^{2}-\left\|z_{n}-p\right\|^{2} \leq\left\|x_{n}-z_{n}\right\|\left\{\left\|x_{n}-p\right\|+\left\|z_{n}-p\right\|\right\} \rightarrow 0 . \tag{4.6}
\end{align*}
$$

So,

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left\|T u_{n}-u_{n}\right\|=0, \quad \lim _{n \rightarrow \infty}\left\|w_{n}-A y_{n}\right\|=\lim _{n \rightarrow \infty}\left\|\left(T_{r_{n}}^{g}-I\right) A y_{n}\right\|=0 \\
& \lim _{n \rightarrow \infty}\left\|S w_{n}-A y_{n}\right\|=\lim _{n \rightarrow \infty}\left\|\left(S T_{r_{n}}^{g}-I\right) A y_{n}\right\|=0, \quad \lim _{n \rightarrow \infty}\left\|S w_{n}-w_{n}\right\|=0 \tag{4.7}
\end{align*}
$$

Notice that $\lim _{n \rightarrow \infty}\left\|T u_{n}-u_{n}\right\|=0$ and $\left\|y_{n}-u_{n}\right\|=\alpha\left\|T u_{n}-u_{n}\right\|$, so

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-u_{n}\right\|=0 \tag{4.8}
\end{equation*}
$$

Further, from (4.5) and (4.8),

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=0 \tag{4.9}
\end{equation*}
$$

Since $x_{n} \rightarrow q$, we have $u_{n} \rightarrow q$ by (4.9). Thus

$$
\|T q-q\| \leq\left\|T q-T u_{n}\right\|+\left\|T u_{n}-u_{n}\right\|+\left\|u_{n}-q\right\| \rightarrow 0
$$

namely $T q=q$ and $q \in \mathcal{F}(T)$. On the other hand, for $r>0$, by Lemma 2.5 , we have

$$
\begin{aligned}
\left\|T_{r}^{f} q-q\right\| & \leq\left\|T_{r}^{f} q-T_{r_{n}}^{f} x_{n}+T_{r_{n}}^{f} x_{n}-x_{n}+x_{n}-q\right\| \\
& \leq\left\|x_{n}-q\right\|+\frac{\left|r_{n}-r\right|}{r_{n}}\left\|T_{r_{n}}^{f} x_{n}-x_{n}\right\|+\left\|T_{r_{n}}^{f} x_{n}-x_{n}\right\|+\left\|x_{n}-q\right\| \rightarrow 0,
\end{aligned}
$$

which yields $q \in \mathcal{F}\left(T_{r}^{f}\right)=E P(f)$. We have verified $q \in \mathcal{F}(T) \cap E P(f)$.
Next, we prove $A q \in \mathcal{F}(S) \cap E P(g)$. Since $x_{n} \rightarrow q$ and $x_{n}-y_{n} \rightarrow 0$ by (4.8) and (4.9) and $w_{n}-A y_{n} \rightarrow 0$ by (4.7), we have $y_{n} \rightarrow q$ and $A y_{n} \rightarrow A q$ and $w_{n} \rightarrow A q$. So,

$$
\|S A q-A q\| \leq\left\|S A q-S w_{n}\right\|+\left\|S w_{n}-w_{n}\right\|+\left\|w_{n}-A q\right\| \rightarrow 0
$$

namely $S A q=A q$ and $A q \in \mathcal{F}(S)$. On the other hand, for $r>0$, by Lemma 2.5 again, we have

$$
\begin{aligned}
\left\|T_{r}^{g} A q-A q\right\| \leq & \left\|T_{r}^{g} A q-T_{r_{n}}^{g} A y_{n}+T_{r_{n}}^{g} A y_{n}-A y_{n}+A y_{n}-A q\right\| \\
\leq & \left\|A y_{n}-A q\right\|+\frac{\left|r_{n}-r\right|}{r_{n}}\left\|T_{r_{n}}^{g} A y_{n}-A y_{n}\right\| \\
& +\left\|T_{r_{n}}^{g} A y_{n}-A y_{n}\right\|+\left\|A y_{n}-A q\right\| \rightarrow 0,
\end{aligned}
$$

which implies that $A q \in \mathcal{F}\left(T_{r}^{g}\right)=E P(g)$. We have verified $A q \in \mathcal{F}(S) \cap E P(g)$.
So, we have obtained $q \in \Omega$ and $x_{n}, u_{n} \rightarrow q$ and $w_{n} \rightarrow A q$, the proof is completed.

If $T=I$ or $S=I$, where I denotes an identity operator, then the following corollaries follow from Theorem 4.1.

Corollary 4.1 Let H_{1} and H_{2} be two real Hilbert spaces. Let $C \subset H_{1}$ and $K \subset H_{2}$ be two nonempty closed convex sets. Let $f: C \times C \rightarrow \mathbb{R}$ and $g: K \times K \rightarrow \mathbb{R}$ be bi-functions satisfying the conditions (A1)-(A4) and $S: K \rightarrow K$ be a non-expansive mapping. Let $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator with its adjoint B. Let $x_{1} \in C_{1}:=C,\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by

$$
\left\{\begin{array}{l}
u_{n}=T_{r_{n}}^{f} x_{n}, \\
w_{n}=T_{r_{n}}^{g} A u_{n}, \\
z_{n}=P_{C}\left(u_{n}+\xi B\left(S w_{n}-A u_{n}\right)\right), \\
C_{n+1}=\left\{v \in C_{n}:\left\|z_{n}-v\right\| \leq\left\|u_{n}-v\right\| \leq\left\|x_{n}-v\right\|\right\}, \\
x_{n+1}=P_{C_{n+1}}\left(x_{1}\right), \quad n \in \mathbb{N},
\end{array}\right.
$$

where $\xi \in\left(0, \frac{1}{\|B\|^{2}}\right)$ and $\left\{r_{n}\right\} \subset(0,+\infty)$ with $\liminf _{n \rightarrow+\infty} r_{n}>0, P_{C}$ is a projection operator from H_{1} into C. Suppose that $\Omega=\{p \in E P(f): A p \in \mathcal{F}(S) \cap E P(g)\} \neq \emptyset$, then $x_{n}, u_{n} \rightarrow q \in \Omega$ and $w_{n} \rightarrow A q \in \mathcal{F}(S) \cap E P(g)$.

Corollary 4.2 Let H_{1} and H_{2} be two real Hilbert spaces. Let $C \subset H_{1}$ and $K \subset H_{2}$ be two nonempty closed convex sets. Let $T: C \rightarrow C$ be a non-expansive mapping and $f: C \times C \rightarrow$ \mathbb{R} and $g: K \times K \rightarrow \mathbb{R}$ be bi-functions satisfying the conditions (A1)-(A4). Let $A: H_{1} \rightarrow H_{2}$
be a bounded linear operator with its adjoint B. Let $x_{1} \in C_{1}:=C,\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by

$$
\left\{\begin{array}{l}
u_{n}=T_{r_{n}}^{f} x_{n} \\
y_{n}=(1-\alpha) u_{n}+\alpha T u_{n} \\
w_{n}=T_{r_{n}}^{g} A y_{n} \\
z_{n}=P_{C}\left(y_{n}+\xi B\left(w_{n}-A y_{n}\right)\right) \\
C_{n+1}=\left\{v \in C_{n}:\left\|z_{n}-v\right\| \leq\left\|y_{n}-v\right\| \leq\left\|x_{n}-v\right\|\right\} \\
x_{n+1}=P_{C_{n+1}}\left(x_{1}\right), \quad n \in \mathbb{N}
\end{array}\right.
$$

where, $\alpha \in(0,1), \xi \in\left(0, \frac{1}{\|B\|^{2}}\right)$ and $\left\{r_{n}\right\} \subset(0,+\infty)$ with $\liminf _{n \rightarrow+\infty} r_{n}>0, P_{C}$ is a projection operator from H_{1} into C. Suppose that $\Omega=\{p \in \mathcal{F}(T) \cap E P(f): A p \in E P(g)\} \neq \emptyset$, then $x_{n}, u_{n} \rightarrow q \in \Omega$ and $w_{n} \rightarrow A q \in E P(g)$.

Corollary 4.3 Let H_{1} and H_{2} be two real Hilbert spaces. Let $C \subset H_{1}$ and $K \subset H_{2}$ be two nonempty closed convex sets. Let $f: C \times C \rightarrow \mathbb{R}$ and $g: K \times K \rightarrow \mathbb{R}$ be bi-functions satisfying the conditions (A1)-(A4). Let $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator with its adjoint B. Let $x_{1} \in C_{1}:=C,\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by

$$
\left\{\begin{array}{l}
u_{n}=T_{r_{n}}^{f} x_{n}, \quad w_{n}=T_{r_{n}}^{g} A u_{n}, \\
z_{n}=P_{C}\left(y_{n}+\xi B\left(w_{n}-A u_{n}\right)\right), \\
C_{n+1}=\left\{v \in C_{n}:\left\|z_{n}-v\right\| \leq\left\|u_{n}-v\right\| \leq\left\|x_{n}-v\right\|\right\} \\
x_{n+1}=P_{C_{n+1}}\left(x_{1}\right), \quad n \in \mathbb{N},
\end{array}\right.
$$

where $\xi \in\left(0, \frac{1}{\|B\|^{2}}\right)$ and $\left\{r_{n}\right\} \subset(0,+\infty)$ with $\liminf _{n \rightarrow+\infty} r_{n}>0, P_{C}$ is a projection operator from H_{1} into C. Suppose that $\Omega=\{p \in E P(f): A p \in E P(g)\} \neq \emptyset$, then $x_{n}, u_{n} \rightarrow q \in \Omega$ and $w_{n} \rightarrow A q \in E P(g)$.

It is well known that the viscosity iterative method is always applied to study the iterative solution for the fixed point problem of nonlinear operators, for example, [5, 6, 8, 15, 16]. Similarly, the viscosity iterative method can also be used to study the hybrid split problem (HSP). So, at the end of this paper, we introduce a viscosity iterative algorithm which can converge strongly to a solution of (HSP).

Theorem 4.2 Let H_{1} and H_{2} be two real Hilbert spaces. Let $C \subset H_{1}$ and $K \subset H_{2}$ be two nonempty closed convex sets. Let $h: C \rightarrow C$ be a α-contraction mapping, $T: C \rightarrow C$ and $S: K \rightarrow K$ be non-expansive mappings and $f: C \times C \rightarrow \mathbb{R}$ and $g: K \times K \rightarrow \mathbb{R}$ be bifunctions satisfying the conditions (A1)-(A4). Let $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator with its adjoint B. Let $x_{1} \in C,\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by

$$
\left\{\begin{array}{l}
u_{n}=T_{r_{n}}^{f} x_{n}, \tag{4.10}\\
w_{n}=T_{r_{n}}^{g} A u_{n}, \\
y_{n}=P_{C}\left(u_{n}+\xi B\left(S w_{n}-A u_{n}\right)\right), \\
z_{n}=(1-r) x_{n}+r T y_{n}, \\
x_{n+1}=\alpha_{n} h\left(x_{n}\right)+\left(1-\alpha_{n}\right) z_{n}, \quad n \in \mathbb{N},
\end{array}\right.
$$

where $r \in(0,1), \xi \in\left(0, \frac{1}{\|B\|^{2}}\right)$ and $\left\{r_{n}\right\} \subset(0,+\infty), P_{C}$ is a projection operator from H_{1} into C, and the coefficients $\left\{\alpha_{n}\right\}$ and $\left\{r_{n}\right\}$ satisfy the following conditions:
(1) $\left\{\alpha_{n}\right\} \subset(0,1), \lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(2) $\liminf _{n \rightarrow+\infty} r_{n}>0, \lim _{n \rightarrow \infty}\left|r_{n+1}-r_{n}\right|=0$.

Suppose that $\Omega=\{p \in \mathcal{F}(T) \cap E P(f): A p \in \mathcal{F}(S) \cap E P(g)\} \neq \emptyset$, then $x_{n}, u_{n} \rightarrow q \in \Omega$ and $w_{n} \rightarrow A q \in \mathcal{F}(S) \cap E P(g)$, where $q=P_{\Omega} h(q)$.

Proof Let $p \in \Omega$. The following inequalities are easily verified:

$$
\begin{equation*}
\left\|u_{n}-p\right\| \leq\left\|x_{n}-p\right\|, \quad\left\|w_{n}-A p\right\| \leq\left\|A u_{n}-A p\right\| . \tag{4.11}
\end{equation*}
$$

By Lemma 2.4,

$$
\begin{gather*}
\left\|u_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-\left\|T_{r_{n}}^{g} x_{n}-x_{n}\right\|^{2}=\left\|x_{n}-p\right\|^{2}-\left\|u_{n}-x_{n}\right\|^{2} ; \\
\left\|S w_{n}-A p\right\|^{2}=\left\|S T_{r_{n}}^{g} A u_{n}-A p\right\|^{2} \leq\left\|T_{r_{n}}^{g} A u_{n}-A p\right\|^{2} \tag{4.12}\\
\leq\left\|A u_{n}-A p\right\|^{2}-\left\|T_{r_{n}}^{g} A u_{n}-A u_{n}\right\|^{2} .
\end{gather*}
$$

From (4.10) and (4.12), we have

$$
\begin{align*}
2 \xi & \left\langle u_{n}-p, B\left(S w_{n}-A u_{n}\right)\right\rangle \\
& =2 \xi\left\langle A\left(u_{n}-p\right)+S w_{n}-A u_{n}-\left(S w_{n}-A u_{n}\right), S w_{n}-A u_{n}\right\rangle \\
& =2 \xi\left(\frac{1}{2}\left\|S w_{n}-A p\right\|^{2}+\frac{1}{2}\left\|S w_{n}-A u_{n}\right\|^{2}-\frac{1}{2}\left\|A u_{n}-A p\right\|^{2}-\left\|S w_{n}-A u_{n}\right\|^{2}\right) \\
& \leq 2 \xi\left(-\frac{1}{2}\left\|T_{r_{n}}^{g} A u_{n}-A u_{n}\right\|^{2}-\frac{1}{2}\left\|S w_{n}-A u_{n}\right\|^{2}\right) \\
& =-\xi\left\|S w_{n}-A u_{n}\right\|^{2}-\xi\left\|T_{r_{n}}^{g} A u_{n}-A u_{n}\right\|^{2} \\
& =-\xi\left\|S w_{n}-A u_{n}\right\|^{2}-\xi\left\|w_{n}-A u_{n}\right\|^{2} \tag{4.13}
\end{align*}
$$

and

$$
\begin{align*}
\left\|y_{n}-p\right\|^{2} & =\| P_{C}\left(u_{n}+\xi B\left(S w_{n}-A u_{n}\right)-P_{C} p \|^{2}\right. \\
& \leq\left\|u_{n}-p+\xi B\left(S w_{n}-A u_{n}\right)\right\|^{2} \\
& =\left\|u_{n}-p\right\|^{2}+\left\|\xi B\left(S w_{n}-A u_{n}\right)\right\|^{2}+2 \xi\left\langle u_{n}-p, B\left(S w_{n}-A u_{n}\right)\right\rangle \\
& \leq\left\|u_{n}-p\right\|^{2}-\xi\left(1-\xi\|B\|^{2}\right)\left\|S w_{n}-A u_{n}\right\|^{2}-\xi\left\|T_{r_{n}}^{g} A u_{n}-A u_{n}\right\|^{2} \\
& \leq\left\|x_{n}-p\right\|^{2}-\xi\left(1-\xi\|B\|^{2}\right)\left\|S w_{n}-A u_{n}\right\|^{2}-\xi\left\|T_{r_{n}}^{g} A u_{n}-A u_{n}\right\|^{2} \\
& =\left\|x_{n}-p\right\|^{2}-\xi\left(1-\xi\|B\|^{2}\right)\left\|S w_{n}-A u_{n}\right\|^{2}-\xi\left\|w_{n}-A u_{n}\right\|^{2} . \tag{4.14}
\end{align*}
$$

So, from (4.10)-(4.11) and (4.14), we have

$$
\begin{equation*}
\left\|y_{n}-p\right\| \leq\left\|u_{n}-p\right\| \leq\left\|x_{n}-p\right\|, \quad\left\|z_{n}-p\right\| \leq\left\|x_{n}-p\right\| . \tag{4.15}
\end{equation*}
$$

We say $\left\{x_{n}\right\}$ is bounded. In fact, from (4.10) and (4.15), we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|\alpha_{n}\left(f\left(x_{n}\right)-p\right)+\left(1-\alpha_{n}\right)\left(z_{n}-p\right)\right\| \leq\left(1-\alpha_{n}\right)\left\|z_{n}-p\right\|+\alpha_{n}\left\|f\left(x_{n}\right)-p\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|+\alpha_{n} \alpha\left\|x_{n}-p\right\|+\alpha_{n}\|f(p)-p\| \\
& =\left(1-\alpha_{n}(1-\alpha)\right)\left\|x_{n}-p\right\|+\alpha_{n}(1-\alpha) \frac{\|f(p)-p\|}{1-\alpha},
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left\|x_{n}-p\right\| \leq \max \left\{\left\|x_{1}-p\right\|, \frac{\|f(p)-p\|}{1-\alpha}\right\}, \quad \forall n \in \mathbb{N} \tag{4.16}
\end{equation*}
$$

so $\left\{x_{n}\right\}$ is bounded. Further, $\left\{u_{n}\right\},\left\{w_{n}\right\}$ and $\left\{y_{n}\right\}$ are also bounded by (4.11).
By Lemma 2.5, from (4.10) we have

$$
\begin{align*}
\left\|u_{n+1}-u_{n}\right\|^{2} & =\left\|T_{r_{n+1}}^{f} x_{n+1}-T_{r_{n}}^{f} x_{n}\right\|^{2} \\
& \leq\left(\left\|x_{n+1}-x_{n}\right\|+\frac{\left|r_{n}-r_{n+1}\right|}{r_{n}}\left\|T_{r_{n}}^{f} x_{n}-x_{n}\right\|\right)^{2} \\
& \leq\left\|x_{n+1}-x_{n}\right\|^{2}+\frac{\left|r_{n}-r_{n+1}\right|}{r_{n}} M_{1}, \\
\left\|w_{n+1}-w_{n}\right\|^{2} & =\left\|T_{r_{n+1}}^{g} A u_{n+1}-T_{r_{n}}^{g} A u_{n}\right\|^{2} \tag{4.17}\\
& \leq\left(\left\|A u_{n+1}-A u_{n}\right\|+\frac{\left|r_{n}-r_{n+1}\right|}{r_{n}}\left\|T_{r_{n}}^{g} A u_{n}-A u_{n}\right\|\right)^{2} \\
& \leq\left\|A u_{n+1}-A u_{n}\right\|^{2}+\frac{\left|r_{n}-r_{n+1}\right|}{r_{n}} M_{1}
\end{align*}
$$

and

$$
\begin{aligned}
\left\|y_{n+1}-y_{n}\right\|^{2} \leq & \left\|u_{n+1}+\xi B\left(S w_{n+1}-A u_{n+1}\right)-u_{n}-\xi B\left(S w_{n}-A u_{n}\right)\right\|^{2} \\
= & \left\|u_{n+1}-u_{n}+\xi B\left(S w_{n+1}-A u_{n+1}-\left(S w_{n}-A u_{n}\right)\right)\right\|^{2} \\
= & \left\|u_{n+1}-u_{n}\right\|^{2}+\left\|\xi B\left(S w_{n+1}-A u_{n+1}-\left(S w_{n}-A u_{n}\right)\right)\right\|^{2} \\
& +2 \xi\left\langle u_{n+1}-u_{n}, B\left(S w_{n+1}-A u_{n+1}-\left(S w_{n}-A u_{n}\right)\right)\right\rangle \\
\leq & \left\|u_{n+1}-u_{n}\right\|^{2}+\xi^{2}\|B\|^{2}\left\|S w_{n+1}-A u_{n+1}-\left(S w_{n}-A u_{n}\right)\right\|^{2} \\
& +2 \xi\left\langle A\left(u_{n+1}-u_{n}\right), S w_{n+1}-A u_{n+1}-\left(S w_{n}-A u_{n}\right)\right\rangle \\
= & \left\|u_{n+1}-u_{n}\right\|^{2}+\xi^{2}\|B\|^{2}\left\|S w_{n+1}-A u_{n+1}-\left(S w_{n}-A u_{n}\right)\right\|^{2} \\
& +2 \xi\left\langle A\left(u_{n+1}-u_{n}\right)+S w_{n+1}-A u_{n+1}-\left(S w_{n}-A u_{n}\right), S w_{n+1}\right. \\
& \left.-A u_{n+1}-\left(S w_{n}-A u_{n}\right)\right\rangle \\
& -2 \xi\left\langle S w_{n+1}-A u_{n+1}-\left(S w_{n}-A u_{n}\right), S w_{n+1}-A u_{n+1}-\left(S w_{n}-A u_{n}\right)\right\rangle \\
= & \left\|u_{n+1}-u_{n}\right\|^{2}+\xi^{2}\|B\|^{2}\left\|S w_{n+1}-A u_{n+1}-\left(S w_{n}-A u_{n}\right)\right\|^{2} \\
& +2 \xi\left\langle S w_{n+1}-S w_{n}, S w_{n+1}-A u_{n+1}-\left(S w_{n}-A u_{n}\right)\right\rangle \\
& -2 \xi\left\|S w_{n+1}-A u_{n+1}-\left(S w_{n}-A u_{n}\right)\right\|^{2}
\end{aligned}
$$

$$
\begin{align*}
= & \left\|u_{n+1}-u_{n}\right\|^{2}+\xi^{2}\|B\|^{2}\left\|S w_{n+1}-A u_{n+1}-\left(S w_{n}-A u_{n}\right)\right\|^{2} \\
& +2 \xi \frac{1}{2}\left\{\left\|S w_{n+1}-S w_{n}\right\|^{2}+\left\|S w_{n+1}-A u_{n+1}-\left(S w_{n}-A u_{n}\right)\right\|^{2}\right. \\
& \left.-\left\|A u_{n+1}-A u_{n}\right\|^{2}\right\} \\
& -2 \xi\left\|S w_{n+1}-A u_{n+1}-\left(S w_{n}-A u_{n}\right)\right\|^{2} \\
= & \left\|u_{n+1}-u_{n}\right\|^{2}+\xi^{2}\|B\|^{2}\left\|S w_{n+1}-A u_{n+1}-\left(S w_{n}-A u_{n}\right)\right\|^{2} \\
& +\xi\left\{\left\|S w_{n+1}-S w_{n}\right\|^{2}-\left\|A u_{n+1}-A u_{n}\right\|^{2}\right\} \\
& -\xi\left\|S w_{n+1}-A u_{n+1}-\left(S w_{n}-A u_{n}\right)\right\|^{2} \\
\leq & \left\|u_{n+1}-u_{n}\right\|^{2}-\xi\left(1-\xi\|B\|^{2}\right)\left\|S w_{n+1}-A u_{n+1}-\left(S w_{n}-A u_{n}\right)\right\|^{2} \\
& +\xi\left\{\left\|w_{n+1}-w_{n}\right\|^{2}-\left\|A u_{n+1}-A u_{n}\right\|^{2}\right\} \\
\leq & \left\|u_{n+1}-u_{n}\right\|^{2}-\xi\left(1-\xi\|B\|^{2}\right)\left\|S w_{n+1}-A u_{n+1}-\left(S w_{n}-A u_{n}\right)\right\|^{2} \\
& +\xi\left\{\left\|A u_{n+1}-A u_{n}\right\|^{2}+\frac{\left|r_{n}-r_{n+1}\right|}{r_{n}} M_{1}-\left\|A u_{n+1}-A u_{n}\right\|^{2}\right\} \\
= & \left\|u_{n+1}-u_{n}\right\|^{2}-\xi\left(1-\xi\|B\|^{2}\right)\left\|S w_{n+1}-A u_{n+1}-\left(S w_{n}-A u_{n}\right)\right\|^{2} \\
& +\xi \frac{\left|r_{n}-r_{n+1}\right|}{r_{n}} M_{1} \\
\leq & \left\|x_{n+1}-x_{n}\right\|^{2}-\xi\left(1-\xi\|B\|^{2}\right)\left\|S w_{n+1}-A u_{n+1}-\left(S w_{n}-A u_{n}\right)\right\|^{2} \\
& +\frac{\left|r_{n}-r_{n+1}\right|}{r_{n}}\left(\xi M_{1}+M_{1}\right), \tag{4.18}
\end{align*}
$$

where M_{1} is a constant satisfying

$$
\begin{aligned}
& \sup _{n \in \mathbb{N}}\left\{2\left\|x_{n+1}-x_{n}\right\|\left\|T_{r_{n}}^{f} x_{n}-x_{n}\right\|+\frac{\left|r_{n}-r_{n+1}\right|}{r_{n}}\left\|T_{r_{n}}^{f} x_{n}-x_{n}\right\|^{2},\right. \\
& \left.\quad 2\left\|A u_{n+1}-A u_{n}\right\|\left\|T_{r_{n}}^{g} A u_{n}-A u_{n}\right\|+\frac{\left|r_{n}-r_{n+1}\right|}{r_{n}}\left\|T_{r_{n}}^{g} A u_{n}-A u_{n}\right\|^{2}\right\} \leq M_{1}
\end{aligned}
$$

Proving $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Setting $\beta_{n}=1-\left(1-\alpha_{n}\right)(1-r)$ and $v_{n}=\frac{x_{n+1}-x_{n}+\beta_{n} x_{n}}{\beta_{n}}$, namely $v_{n}=\frac{\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) r T y_{n}}{\beta_{n}}$. Let M_{2} be a constant satisfying $\sup _{n \in \mathbb{N}}\left\{\left\|\frac{f\left(x_{n+1}\right)}{\beta_{n+1}}\right\|,\left\|\frac{f\left(x_{n}\right)}{\beta_{n}}\right\|\right.$, $\left.\left\|T y_{n}\right\|\right\} \leq M_{2}$ for all $n \in \mathbb{N}$. Then

$$
\begin{aligned}
\left\|v_{n+1}-v_{n}\right\|= & \left\|\frac{\alpha_{n+1} f\left(x_{n+1}\right)+\left(1-\alpha_{n+1}\right) r T y_{n+1}}{\beta_{n+1}}-\frac{\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) r T y_{n}}{\beta_{n}}\right\| \\
\leq & \alpha_{n+1}\left\|\frac{f\left(x_{n+1}\right)}{\beta_{n+1}}\right\|+\alpha_{n}\left\|\frac{f\left(x_{n}\right)}{\beta_{n}}\right\|+r\left\|\frac{\left(1-\alpha_{n+1}\right) T y_{n+1}}{\beta_{n+1}}-\frac{\left(1-\alpha_{n}\right) T y_{n}}{\beta_{n}}\right\| \\
\leq & \left(\alpha_{n+1}+\alpha_{n}\right) M_{2}+r \| \frac{\left(1-\alpha_{n+1}\right)\left(T y_{n+1}-T y_{n}\right)}{\beta_{n+1}} \\
& +\frac{\left(1-\alpha_{n+1}\right) T y_{n}}{\beta_{n+1}}-\frac{\left(1-\alpha_{n}\right) T y_{n}}{\beta_{n}} \| \\
\leq & \left(\alpha_{n+1}+\alpha_{n}\right) M_{2}+r \frac{\left(1-\alpha_{n+1}\right)\left\|y_{n+1}-y_{n}\right\|}{\beta_{n+1}}+\left|\frac{\left(1-\alpha_{n+1}\right)}{\beta_{n+1}}-\frac{\left(1-\alpha_{n}\right)}{\beta_{n}}\right| M_{2}
\end{aligned}
$$

$$
\begin{align*}
= & \left(\alpha_{n+1}+\alpha_{n}\right) M_{2}+r \frac{\left(1-\alpha_{n+1}\right)\left\|y_{n+1}-y_{n}\right\|}{\beta_{n+1}} \\
& \quad+\left|\frac{(1-r)\left(\alpha_{n}-\alpha_{n+1}\right)+\beta_{n+1} \alpha_{n}-\beta_{n} \alpha_{n+1}}{\beta_{n} \beta_{n+1}}\right| M_{2} \\
\leq & \left(\alpha_{n+1}+\alpha_{n}\right) M_{2}+r \frac{\left(1-\alpha_{n+1}\right)\left\|y_{n+1}-y_{n}\right\|}{\beta_{n+1}}+2 \frac{\alpha_{n}+\alpha_{n+1}}{\beta_{n} \beta_{n+1}} M_{2} \\
:= & \rho_{n}+r \frac{\left(1-\alpha_{n+1}\right)\left\|y_{n+1}-y_{n}\right\|}{\beta_{n+1}} . \tag{4.19}
\end{align*}
$$

From (4.18) and (4.19), we have

$$
\begin{align*}
\left\|v_{n+1}-v_{n}\right\|^{2} \leq & \left(\rho_{n}+r \frac{\left(1-\alpha_{n+1}\right)\left\|y_{n+1}-y_{n}\right\|}{\beta_{n+1}}\right)^{2} \\
= & \rho_{n}^{2}+2 \rho_{n} r \frac{\left(1-\alpha_{n+1}\right)\left\|y_{n+1}-y_{n}\right\|}{\beta_{n+1}}+r^{2} \frac{\left(1-\alpha_{n+1}\right)^{2}\left\|y_{n+1}-y_{n}\right\|^{2}}{\beta_{n+1}^{2}} \\
\leq & \rho_{n}^{2}+2 \rho_{n} r \frac{\left(1-\alpha_{n+1}\right)\left\|y_{n+1}-y_{n}\right\|}{\beta_{n+1}}+r^{2} \frac{\left(1-\alpha_{n+1}\right)^{2}}{\beta_{n+1}^{2}}\left\|x_{n+1}-x_{n}\right\|^{2} \\
& +r^{2} \frac{\left(1-\alpha_{n+1}\right)^{2}}{\beta_{n+1}^{2}} \frac{\left|r_{n}-r_{n+1}\right|}{r_{n}}(1+\xi) M_{1} . \tag{4.20}
\end{align*}
$$

By the conditions (1) and (2) and (4.20), we obtain

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\{\left\|v_{n+1}-v_{n}\right\|^{2}-\left\|x_{n+1}-x_{n}\right\|^{2}\right\} \leq 0 \tag{4.21}
\end{equation*}
$$

Notice $\left\|v_{n+1}-v_{n}\right\|^{2}-\left\|x_{n+1}-x_{n}\right\|^{2}=\left(\left\|v_{n+1}-v_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right)\left(\left\|v_{n+1}-v_{n}\right\|+\left\|x_{n+1}-x_{n}\right\|\right)$, hence from (4.21) we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\{\left\|v_{n+1}-v_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right\} \leq 0 \tag{4.22}
\end{equation*}
$$

By Lemma 2.7 and (4.22), we have $\lim _{n \rightarrow \infty}\left\|v_{n}-x_{n}\right\|=0$, which implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{4.23}
\end{equation*}
$$

by the definition of v_{n}. Since $\left\|x_{n+1}-z_{n}\right\| \rightarrow 0$, together with (4.23), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-z_{n}\right\|=0 \tag{4.24}
\end{equation*}
$$

Using (4.10), (4.12) and (4.15),

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2} & =\left\|\alpha_{n}\left(f\left(x_{n}\right)-p\right)+\left(1-\alpha_{n}\right)\left(z_{n}-p\right)\right\|^{2} \\
& \leq\left(1-\alpha_{n}\right)\left\|z_{n}-p\right\|^{2}+\alpha_{n}\left\|f\left(x_{n}\right)-p\right\|^{2} \\
& \leq(1-r)\left\|x_{n}-p\right\|^{2}+r\left\|u_{n}-p\right\|^{2}+\alpha_{n}\left\|f\left(x_{n}\right)-p\right\|^{2} \\
& \leq\left\|x_{n}-p\right\|^{2}-r\left\|u_{n}-x_{n}\right\|^{2}+\alpha_{n}\left\|f\left(x_{n}\right)-p\right\|^{2}, \tag{4.25}
\end{align*}
$$

which yields

$$
\begin{align*}
r\left\|u_{n}-x_{n}\right\|^{2} & \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+\alpha_{n}\left\|f\left(x_{n}\right)-p\right\|^{2} \\
& =\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)\left(\left\|x_{n}-p\right\|-\left\|x_{n+1}-p\right\|\right)+\alpha_{n}\left\|f\left(x_{n}\right)-p\right\|^{2} \\
& \leq\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)\left\|x_{n}-x_{n+1}\right\|+\alpha_{n}\left\|f\left(x_{n}\right)-p\right\|^{2} . \tag{4.26}
\end{align*}
$$

From (4.26) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{r_{n}}^{f} x_{n}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|u_{n}-x_{n}\right\|=0 \tag{4.27}
\end{equation*}
$$

Again, applying (4.25), (4.15) and (4.14), we have

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2} \leq & \left(1-\alpha_{n}\right)\left\|z_{n}-p\right\|^{2}+\alpha_{n}\left\|f\left(x_{n}\right)-p\right\|^{2} \\
\leq & (1-r)\left\|x_{n}-p\right\|^{2}+r\left\|y_{n}-p\right\|^{2}+\alpha_{n}\left\|f\left(x_{n}\right)-p\right\|^{2} \\
\leq & \left\|x_{n}-p\right\|^{2}-r \xi\left(1-\xi\|B\|^{2}\right)\left\|S w_{n}-A u_{n}\right\|^{2} \\
& \quad r \xi\left\|w_{n}-A u_{n}\right\|^{2}+\alpha_{n}\left\|f\left(x_{n}\right)-p\right\|^{2}, \tag{4.28}
\end{align*}
$$

which implies that

$$
\begin{align*}
& r \xi\left(1-\xi\|B\|^{2}\right)\left\|S w_{n}-A u_{n}\right\|^{2}+r \xi\left\|w_{n}-A u_{n}\right\|^{2} \\
& \quad \leq\left\{\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right\}\left\|x_{n}-x_{n+1}\right\|+\alpha_{n}\left\|f\left(x_{n}\right)-p\right\|^{2} \tag{4.29}
\end{align*}
$$

From (4.29) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{r_{n}}^{g} A u_{n}-A u_{n}\right\|=\lim _{n \rightarrow \infty}\left\|w_{n}-A u_{n}\right\|=0, \quad \lim _{n \rightarrow \infty}\left\|S w_{n}-A u_{n}\right\|=0 \tag{4.30}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S w_{n}-w_{n}\right\|=0 \tag{4.31}
\end{equation*}
$$

Notice $y_{n}=P_{C}\left(u_{n}+\xi B\left(S w_{n}-A u_{n}\right)\right)$ and $u_{n} \in C$ for all $n \in \mathbb{N}$, so

$$
\begin{aligned}
\left\|y_{n}-u_{n}\right\| & =\left\|P_{C}\left(u_{n}+\xi B\left(S w_{n}-A u_{n}\right)\right)-P_{C} u_{n}\right\| \leq\left\|\xi B\left(S w_{n}-A u_{n}\right)\right\| \\
& \leq \xi\|B\|\left\|S w_{n}-A u_{n}\right\|,
\end{aligned}
$$

so

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-u_{n}\right\|=0 \tag{4.32}
\end{equation*}
$$

Further, from (4.27), (4.32) and (4.24), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0, \quad \lim _{n \rightarrow \infty}\left\|y_{n}-z_{n}\right\|=0 \tag{4.33}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-T y_{n}\right\|=0 \quad \text { by (4.10), (4.24) and (4.33). } \tag{4.34}
\end{equation*}
$$

Let $q=P_{\Omega_{\Omega}} f(q)$. Choose a subsequence $\left\{x_{n_{k}}\right\}$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle f(q)-q, x_{n}-q\right\rangle=\lim _{k \rightarrow \infty}\left\langle f(q)-q, x_{n_{k}}-q\right\rangle . \tag{4.35}
\end{equation*}
$$

Since $\left\{x_{n}\right\}$ is bounded, $\left\{\left\langle f(q)-q, x_{n}-q\right\rangle\right\}$ is bounded. Hence $\limsup _{n \rightarrow \infty}\left\langle f(q)-q, x_{n}-q\right\rangle$ is a constant, namely $\lim _{n \rightarrow \infty}\left\langle f(q)-q, x_{n_{k}}-q\right\rangle$ exists, which implies (4.35) is well defined. Because $\left\{x_{n}\right\}$ is bounded, $\left\{x_{n_{k}}\right\}$ has a weak convergence subsequence which is still denoted by $\left\{x_{n_{k}}\right\}$. Suppose $x_{n_{k}} \rightharpoonup x^{*}$, we say $x^{*} \in \Omega$. When $x_{n_{k}} \rightharpoonup x^{*}$, from (4.30), (4.32) and (4.33), we have

$$
\begin{equation*}
u_{n_{k}} \rightharpoonup x^{*}, \quad y_{n_{k}} \rightharpoonup x^{*}, \quad z_{n_{k}} \rightharpoonup x^{*}, \quad A u_{n_{k}} \rightharpoonup A x^{*}, \quad w_{n_{k}} \rightharpoonup A x^{*} . \tag{4.36}
\end{equation*}
$$

If $T x^{*} \neq x^{*}$, then by (4.34) and (4.36) and Opial's condition, we have

$$
\begin{align*}
\liminf _{k \rightarrow \infty}\left\|y_{n_{k}}-x^{*}\right\| & <\liminf _{k \rightarrow \infty}\left\|y_{n_{k}}-T x^{*}\right\| \\
& \leq \liminf _{k \rightarrow \infty}\left\{\left\|y_{n_{k}}-T y_{n_{k}}\right\|+\left\|T y_{n_{k}}-T x^{*}\right\|\right\} \\
& \leq \liminf _{k \rightarrow \infty}\left\{\left\|y_{n_{k}}-T y_{n_{k}}\right\|+\left\|y_{n_{k}}-x^{*}\right\|\right\}=\liminf _{k \rightarrow \infty}\left\|y_{n_{k}}-x^{*}\right\| \tag{4.37}
\end{align*}
$$

which is a contradiction, so $T x^{*}=x^{*}$ and $x^{*} \in \mathcal{F}(T)$. Since for each $r>0, E P(f)=\mathcal{F}\left(T_{r}^{f}\right)$ by Lemma 2.2, we have $x^{*} \in \mathcal{F}\left(T_{r}^{f}\right)$. Otherwise, if there exists $r>0$ such that $T_{r}^{f} x^{*} \neq x^{*}$, then by (4.27) and Lemma 2.5 and Opial's condition, we have

$$
\begin{align*}
\liminf _{k \rightarrow \infty}\left\|x_{n_{k}}-x^{*}\right\| & <\liminf _{k \rightarrow \infty}\left\|x_{n_{k}}-T_{r}^{f} x^{* *}\right\| \\
& \leq \liminf _{k \rightarrow \infty}\left\{\left\|x_{n_{k}}-T_{n_{k}}^{f} x_{n_{k}}\right\|+\left\|T_{n_{k}}^{f} x_{n_{k}}-T_{r}^{f} x^{*}\right\|\right\} \\
& =\liminf _{k \rightarrow \infty}\left\|T_{n_{k}}^{f} x_{n_{k}}-T_{r}^{f} x^{*}\right\| \\
& \leq \liminf _{k \rightarrow \infty}\left\{\left\|x_{n_{k}}-x^{*}\right\|+\frac{\left|r_{n_{k}}-r\right|}{r_{n_{k}}}\left\|T_{n_{k}}^{f} x_{n_{k}}-x_{n_{k}}\right\|\right\} \\
& =\liminf _{k \rightarrow \infty}\left\|x_{n_{k}}-x^{*}\right\|, \tag{4.38}
\end{align*}
$$

which is also a contradiction, so $T_{r}^{f} x^{*}=x^{*}$ and $x^{*} \in \mathcal{F}\left(T_{r}^{f}\right)=E P(f)$. Up to now, we have proved $x^{*} \in \mathcal{F}(T) \cap E P(f)$. Similarly, we can also prove $A x^{*} \in \mathcal{F}(S) \cap E P(g)$. Hence $x^{* *} \in \Omega$, because of this, we can also obtain

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\langle f(q)-q, x_{n}-q\right\rangle & =\lim _{k \rightarrow \infty}\left\langle f(q)-q, x_{n_{k}}-q\right\rangle \\
& =\left\langle f(q)-q, x^{*}-q\right\rangle \leq 0, \quad \text { where } q=P_{C} f(q) . \tag{4.39}
\end{align*}
$$

Finally, we prove the conclusion of this theorem is right. For $q=P_{\Omega} f(q)$, from (4.10) we have

$$
\begin{align*}
\left\|x_{n+1}-q\right\|^{2}= & \left\|\alpha_{n}\left(h\left(x_{n}\right)-q\right)+\left(1-\alpha_{n}\right)\left(z_{n}-q\right)\right\|^{2} \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|z_{n}-q\right\|^{2}+2 \alpha_{n}\left(h\left(x_{n}\right)-q, x_{n+1}-q\right) \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-q\right\|^{2}+2 \alpha_{n}\left(h\left(x_{n}\right)-h(q)+h(q)-q, x_{n+1}-q\right\rangle \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-q\right\|^{2}+2 \alpha_{n} \alpha\left\|x_{n}-q\right\|\left\|x_{n+1}-q\right\|+2 \alpha_{n}\left(h(q)-q, x_{n+1}-q\right\rangle \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-q\right\|^{2}+\alpha_{n} \alpha\left\|x_{n}-q\right\|^{2}+\alpha_{n} \alpha\left\|x_{n+1}-q\right\|^{2} \\
& +2 \alpha_{n}\left(h(q)-q, x_{n+1}-q\right\rangle \\
= & \left(1-2 \alpha_{n}\right)\left\|x_{n}-q\right\|^{2}+\alpha_{n}^{2}\left\|x_{n}-q\right\|^{2}+\alpha_{n} \alpha\left\|x_{n}-q\right\|^{2}+\alpha_{n} \alpha\left\|x_{n+1}-q\right\|^{2} \\
& +2 \alpha_{n}\left(h(q)-q, x_{n+1}-q\right) . \tag{4.40}
\end{align*}
$$

From (4.40) we have

$$
\begin{align*}
\left\|x_{n+1}-q\right\|^{2} \leq & \left(1-\alpha_{n} \frac{2-2 \alpha}{1-\alpha_{n} \alpha}\right)\left\|x_{n}-q\right\|^{2}+\frac{\alpha_{n}^{2}}{1-\alpha_{n} \alpha}\left\|x_{n}-q\right\|^{2} \\
& +2 \frac{\alpha_{n}}{1-\alpha_{n} \alpha}\left\langle h(q)-q, x_{n+1}-q\right\rangle, \tag{4.41}
\end{align*}
$$

by (4.41) and Lemma 2.6, we have $x_{n} \rightarrow q \in \Omega$. Again, from (4.27) and (4.30), we have $u_{n} \rightarrow q \in \Omega$ and $w_{n} \rightarrow A q \in F(S) \cap E P(f)$, respectively. The proof is completed.

Remark

(1) In this paper, the iterative coefficient α or r can be replaced with the sequence $\left\{\zeta_{n}\right\}$ if $\left\{\zeta_{n}\right\}$ satisfies $\left\{\zeta_{n}\right\} \subset[\varrho, \vartheta]$, where $\varrho, \vartheta \in(0,1)$;
(2) Obviously, if $H_{1}=H_{2}$ in this paper, these weak and strong convergence theorems are also true;
(3) In this paper, if T is a nonexpansive mapping from H_{1} into H_{1} and $f(x, y)$ is a bi-function from $H_{1} \times H_{1}$ into \mathbb{R} with the conditions (A1)-(A4), S is a nonexpansive mapping from H_{2} into H_{2} and $g(u, v)$ is a bi-function from $H_{2} \times H_{2}$ into \mathbb{R} with the conditions (A1)-(A4), then we may obtain a series of similar algorithms.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Both authors contributed equally and significantly in writing this paper. Both authors read and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics, Honghe University, Yunnan, 661100, China. ${ }^{2}$ Department of Mathematics, National Kaohsiung Normal University, Kaohsiung, 824, Taiwan.

Acknowledgements

The first author was supported by the Natural Science Foundation of Yunnan Province (2010ZC152). The second author was supported partially by grant No. NSC 101-2115-M-017-001 of the National Science Council of the Republic of China.

References

1. Blum, E, Oettli, W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123-145 (1994)
2. Moudafi, A, Théra, M: Proximal and dynamical approaches to equilibrium problems. In: III-Posed Variational Problems and Regularization Techniques (Trier, 1998). Lecture Notes in Economics and Mathematical Systems, vol. 477, pp. 187-201. Springer, Berlin (1999)
3. Flam, SD, Antipin, AS: Equilibrium programming using proximal-link algorithms. Math. Program. 78, 29-41 (1997)
4. Tada, A, Takahashi, W: Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem. J. Optim. Theory Appl. 133, 359-370 (2007)
5. Takahashi, S, Takahashi, W: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 331, 506-515 (2007)
6. Chang, SS, Joseph Lee, HW, Chan, CK: A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Anal. 70, 3307-3319 (2009)
7. Jung, JS: Strong convergence of composite iterative methods for equilibrium problems and fixed point problems. Appl. Math. Comput. 213, 498-505 (2009)
8. He, Z, Du, W-S: Strong convergence theorems for equilibrium problems and fixed point problems: a new iterative method, some comments and applications. Fixed Point Theory Appl. 2011, Article ID 33 (2011)
9. He, Z : A new iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contractive mappings and its application. Math. Commun. 17, 411-422 (2012)
10. He, Z: The split equilibrium problems and its convergence algorithms. J. Inequal. Appl. 2012, Article ID 162 (2012)
11. He, Z, Du, W-S: Nonlinear algorithms approach to split common solution problems. Fixed Point Theory Appl. 2012, Article ID 130 (2012)
12. Combettes, PL, Hirstoaga, A: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117-136 (2005)
13. Xu, HK: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116, 659-678 (2003)
14. Suzuki, T: Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces. Fixed Point Theory Appl. 2005(1), 103-123 (2005)
15. Moudafi, A: Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 241, 46-55 (2000)
16. Xu, H-K: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279-291 (2004)

doi:10.1186/1687-1812-2013-47

Cite this article as: He and Du: On hybrid split problem and its nonlinear algorithms. Fixed Point Theory and Applications 2013 2013:47.

Submit your manuscript to a SpringerOpen ${ }^{\text {® }}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

