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Abstract

This paper reports the results of an investigation into the properties of a theoretical 
modification of beta proposed by Leland (1999) and based on earlier work of 
Rubinstein (1976). It is shown that when returns are elliptically symmetric that beta is 
the appropriate measure of risk and that there are other situations the which modified 
beta will be similar to the traditional measure based on the CAPM. For the case where 
returns have a normal distribution, it is shown that either the criterion either does not 
exist or that it reduces exactly to the conventional beta. It is therefore conjectured that 
the modified measure will only be useful for portfolios which have non-standard 
return distributions which incorporate skewness. For such situations, it is shown how 
to estimate the measure using regression and how to compare the resulting statistic 
with a traditional estimated beta using Hotelling’s test. An empirical study based on 
stocks from the FTSE350 does not find evidence to support the use of the new 
measure even in the presence of skewness.
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1. Introduction

This paper is concerned with two measures of portfolio performance. The first is beta 
as defined by the capital asset pricing model, henceforth the CAPM. The second is a 
measure of portfolio risk introduced in the context of an asset-pricing model by 
Rubinstein (1976), henceforth R76, and applied in a more recent study by Leland 
(1999), henceforth L99. 

The strengths and weaknesses of the CAPM as well as the associated market model1

are well known and it is not intended to rehearse them in detail in this paper. It is 
sufficient to draw attention to two features that have been reported in the literature. 
First, under the CAPM the superior performance of a portfolio is measured by alpha. 
This parameter may be estimated in a number of ways, for example as the mean of the 
estimated residuals after fitting the market model or by including it as a parameter in 
the model. Secondly, the market model may be mis-specified for any one of a number 
of reasons. In such cases, the estimated values of alpha may contain misleading 
information: specifically, such estimates will reflect specification errors of one kind or 
another rather than being a consistent estimator of superior performance. 

To deal with the problems associated with estimates of alpha, L99 proposes a measure 
of risk first described in R76. For brevity this will be referred to in the remainder of 
this paper as the Rubinstein-Leland beta or RL-beta for short. The word beta when 
used alone is taken to refer to the familiar coefficient in the CAPM and the traditional 
market model. The word alpha refers to the intercept in either model and is a measure 
of excess return.  The RL-beta does not require that asset returns are symmetrically 
distributed. Indeed, as far as the detailed statistical foundations are concerned, it is 
only necessary to assume that returns on the market portfolio follow a lognormal 
distribution and are independently distributed in successive time periods. The lack of 
dependence on symmetry in the return distributions gives the RL-beta the potential to 
provide superior measures of performance in situations where beta may yield 
misleading estimates of alpha. However, as exemplified in L99, there are cases in 
which the estimated values of beta and RL-beta are very similar.  As described in 
some detail in Section 4 of this paper, such properties of the RL-beta depend to a 
substantial extent on the lognormal assumption. Furthermore, as is also shown below, 
there are plausible statistical models for the multivariate probability distribution of 
portfolio returns under which the RL-beta does not exist. Notwithstanding such 
theoretical difficulties, the lack of dependence on symmetry in return distributions 
makes RL-beta a potentially attractive measure of risk for some types of portfolio, for 
example those containing options.

The aims of this paper are as follows. First, it is to describe the theoretical properties 
of RL-beta. Secondly, it is to present a practical method of estimating it for a given 
portfolio. Thirdly, it is to present a test that permits the statistical significance of 

                                               
1 In this paper a distinction is made between the CAPM and the market model. The former is the 
theorem that links the expected excess return on an asset to the expected excess return on the market 
using beta. The latter is the corresponding model that is obtained by considering the conditional 
probability distribution of return on the asset given the return on the market portfolio and imposing the 
restriction on the parameter values which the CAPM implies.
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differences between beta and RL-beta to be examined. The paper begins with a 
summary of relevant properties of beta and RL-beta. Thereafter, Sections 3, 4 and 5 
are concerned with each of the specified aims. Section 6 contains an empirical study 
and Section 7 concludes. Notation is that in common use. Two short appendices 
contain details of the technical results in Sections 3 and 5. In keeping with common 
practice, only the main results are presented here, with further details being available 
on request.

2. Background and Literature Review 

This section of the paper presents general background and a short review of relevant 
literature. The description of the CAPM and the market model as well as the summary 
of the RL-beta make no claims to be complete. The material described is only that 
which is needed for what follows. 

In this section and the rest of the paper, the notation Rm denotes the single-period 
return on the market portfolio. Depending on the context, Rp or Ri is used to denote 
the return on either an asset or a portfolio. The time subscript is omitted. It is further 
assumed that R refers to continuously compounded returns; that is in the usual 
notation )/Pln(PR 01 and -∞ < R < ∞. The returns corresponding to percent changes 

in price 1/PP 01  are denoted ri, rp and rm respectively. The risk free rate is denoted 

by Rf. The notation p is reserved for the ratio )var(/),cov( mmp RRR . When it is 

necessary to refer to the corresponding parameter for returns based on percent 
changes the notation PC

pβ is used. The RL-beta is denoted by pΒ .

The CAPM depends on the assumption that investors follow a quadratic utility
function. Quadratic utility is widely criticised on a number of grounds. The classic 
criticism of Pratt (1966) is still valid today. There is a well known and more 
practically orientated critique in Michaud (1998).  However, from the perspective of 
empirical work, the quadratic utility function offers the advantage that its expected 
value generally exists. As will be shown in Section 4, existence of the expected utility 
can be material to the use of an asset-pricing model. Also material to Section 4 is the
case where returns follow a multivariate normal distribution. In this case Stein’s 
lemma, (Stein 1981), as applied in Kallberg and Ziemba (1983), means that the use of 
any well-behaved utility function will lead to a portfolio on the mean-variance 
efficient frontier. There is a similar result for the multivariate Student distribution, 
which depends on an extension of Stein’s lemma due to Liu (1994). This result, 
however, is less general as the multivariate Student distribution imposes limitations 
on the type of utility function that may be employed.

Although the CAPM makes no explicit statement about the underlying probability 
distribution, the use of variance may be taken to imply that returns are symmetrically 
distributed. The symmetry so implied leads naturally to the consideration of members 
of the elliptically symmetric class of distributions as suitable models for the 
multivariate probability distribution of asset returns. Of this general class of models, 
whose properties are described in the important monograph by Fang et al (1990), the 
two distributions that are most commonly used in finance are the multivariate normal 
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and the multivariate Student. All members of this class are parameterised2 by a vector 
of location parameters , which has elements i, and a positive definite scale matrix 
, which has diagonal elements 2

i and off-diagonal elements ij . Depending on the 

specific model, there may be other parameters. For example, there are no other 
parameters for the multivariate normal, but there is a degree of freedom parameter for 
the multivariate Student. 

The market model is properly described as the conditional distribution of the return on 
an asset or portfolio given the return on the market portfolio. When the joint 
probability distribution of asset returns is a member of the elliptically symmetric 
class, the conditional expected value of returns on any asset or portfolio Ri given the 
return on any asset or portfolio Rp is

                   
),()( ppiii μRβμRE  (1.)

where

                                   2
pipi σσβ / . (2.)

If the CAPM holds, the market model takes the form

                         ifmifi εRRβRR  )( , (3.)

where 0)( iεE . Thus, under elliptical symmetry, beta as defined by equation (2.) is 
the correct measure of systematic risk. In addition, excess performance may be 
measured by positing the model

                      ifmiifi εRRβαRR  )( , (4.)

in the usual way. Unbiased estimators of both  and may be obtained using OLS. 
These will be BLUE estimators if returns are normal. If another member of the 
elliptically symmetric class is used then it is necessary to use other methods of 
estimation, such as WLS or maximum likelihood. However, when the CAPM holds 
and regardless of the details of the estimation, under elliptically symmetry beta as 
defined by (2.) and alpha as defined by (4.) are the correct theoretical measures of risk 
and excess performance. 

It is now common practice to embed the market model in a more complicated 
econometric framework than traditional OLS. Such models may be econometric 
models in which there are time series effects. These may include auto-regressive 
and/or moving average terms, or they may include ARCH/GARCH terms to reflect 
changing variance. Such models require appropriate methods for parameter 

                                               
2 The phrase location parameter is preferred to mean since under some members of the elliptically 
symmetric class the latter does not exist. When it exists, the covariance matrix is proportional to .
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estimation. However, under elliptical symmetry such additional complexities do not 
detract from the fact beta and alpha are the correct measures to employ.

However, not all assets or portfolios have returns that are elliptically symmetric. 
Skewness is present in the returns of some underlying assets. For over thirty years, 
skewness has been the subject of numerous empirical studies as well as research into 
asset pricing models. The large literature on skewness includes the seminal papers by 
Samuelson (1970), Kraus and Litzenberger (1976), Simkowitz and Beedles (1978) 
and Singleton and Wingender (1986). There are many more recent studies, including 
for example those by Chunhachinda et al (1997), Harvey and Siddique (2000), Sun 
and Yan (2003) and Adcock (2004). Asymmetry is a particularly important feature of 
the returns on options, arising because of the truncation of the return distribution at 
the exercise price. It is to deal with such asymmetry that Leland, L99, proposes the 
use of the asset-pricing model presented in a paper by Rubinstein. The RL-beta, as the 
consequent measure of systematic risk is called in this paper, was introduced in R76, 
which describes the derivation and associated assumptions in detail. The assumptions 
that are relevant to this paper are the following. First, it is assumed that returns on the 
market portfolio follow a lognormal distribution. Using the notation established at the 
start of the section, this is equivalent to defining returns on the market as mr where

                                           mR
m er 1 . (5.)

Secondly, it is assumed that returns on the market portfolio in successive time periods 
are independently distributed3. Thirdly, it is assumed that investors use a power utility 
function of the general form

                            011   b),b/(x)x(U b . (6.)

The basic asset pricing equation takes the form

                        fmifi RrEΒRrE  )()( , (7.)

where the measure of risk, iΒ , is defined as

                      
 
 b

mm

b
mi

i r1r

r1r
Β 







)(,cov

)(,cov
. (8.)

When the returns on the market portfolio are lognormal, equivalently when mR has a 

normal distribution with mean m and variance 2
m , R76 shows that b is given by

     2
mfm

2
mfm σRlnσRlnr1lnE /)1(2/1/)1()(2/1b  . (9.)

                                               
3 Rubinstein (1976) assumes that returns are IID. However, the assumption that the parameters remain 
constant may be relaxed.
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There is a similar result in Breedon and Litzenberger (1978). It may be noted that the 
second term in the definition of b is generally well approximated by mm σSR / , where 

mSR is the Sharpe ratio of the market portfolio. It is to be expected therefore that 
estimated values of b will generally be greater than 0.5. However, as is shown in 
section 6, if returns from a bear market are used it is possible for the estimated value 
of b to be negative. The RL-beta as defined by equations (8.) and (9.) is proposed as a 
measure of risk by L99. According to Leland, the lack of dependence on the CAPM 
and market model assumptions may be taken to mean that iΒ will lead to more 

accurate measures of the alpha of a portfolio. Indeed, Leland presents example of 
portfolios which consist of a long position in the market portfolio and a written call 
option on the market for which the estimated alphas are close to zero. However, the 
same paper also presents results for which the estimated values of beta and RL-beta 
are very similar, thus leading to similar estimates of alpha. Furthermore, Leland 
shows that if returns on the portfolio are lognormal, then for short investment 
horizons it is true that PC

ii βΒ  . By contrast Isakov and Morard (2001) use the RL-

beta in a study of the performance of stock portfolios in which there are also holdings 
in call options written on the underlying constituent stocks. Their results indicate that 
there are differences in the computed values of beta and RL-beta and that different 
inferences therefore result when two portfolios are compared. 

3. Asset Pricing Equations Based on Beta and the RL-Beta

The central issue in the use of Β , the RL-beta, in the asset pricing equation at (7.) is 
the extent to which it differs from the CAPM beta. To investigate this, it is assumed in 
the first instance following L99 that returns on a portfolio p and on the market have a 
bivariate lognormal distribution. That is

                        mmpp Rrln,Rrln  11 , (10.)

where the two-vector  mp R,R has a bivariate normal distribution with parameters 

pmmpmp ,,,,  22 in the usual notation. With these assumptions, p is given in 

Leland (1997)

        
1e

1e

2

1

2

1
expp










 





2
m

pm

bσ

bσ
2
mm

2
pp σμσμ . (12.)

It is shown in appendix A that if the time period is of short enough duration so that 
terms of order 3 and higher may be omitted the RL-beta is given by

  





 







  2

mm
2
ppp

2
mpp σμσμβbσβΒ

2

1

2

1
exp1

2

1
1 . (13.)

Substitution into equation (7.), re-arrangement and taking into account only terms of 
order 2 or less gives the asset pricing equation
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                   fmpppfp RR   , (14.)

where

      .1
2

1
1,

2

1







  pfmp

2
m

2
mp

2
p

2
pp βRμδσμβσμα (15.)

Under lognormality therefore, the market model based on the RL-beta is similar to 
that at equation (4.), except that the intercept p is as specified above and that the 

measure of risk is pp rather than p . In general p is non-zero and p is not equal 

to 1. However, since p is the same order as 2
pR it is clear that it will be small in 

general. It is of some interest to note that the term in (14.) which involves pp may 

be written as

       2
f)()2/1( Rμ1ββRμβRμδβ mppfmpfmpp  . (16.)

This shows that the model at (14.) has some theoretical connection to the market well-
known market-timing model of Treynor and Mazuy (1966). The implication of (16.), 
however, is that the quadratic effect will be small in magnitude and that it will have a 
negative coefficient for stocks with betas less than unity. Another implication of (14.) 
is that the coefficients should be estimated using continuously compounded returns 
even though the model is posited in terms of percentage changes.

A different interpretation arises if the CAPM is re-considered for the case where the 
expected returns, variances and covariances are those of the percentage returns pr and 

mr rather than the continuously compounded pR and mR . In this case, the expected 

values are, respectively

    





 






  2

mmm
2
ppr σμrEσμrE

2

1
exp)(,

2

1
exp)( . (17.)

The corresponding beta is given in the appendix to L99:

   
1e

1e

2

1

2

1
exp










  2

m

pm

σ

σ
2
mm

2
pp

PC
p σμσμβ . (18.)

This gives an asset pricing model that is somewhat different from that at equation 
(14.) but demonstrates once again that when returns are lognormal there is a clear 
functional relationship between  and PCβ and that there will be cases where the two 
measures are numerically similar. 

The models implied by equations (12.) through (18.) are approximate and depend on 
the ability to omit terms involving powers of  and 2 and their products. As stated in 
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L99, this means that that there will be greater similarity between beta and RL-beta at 
higher frequencies. For portfolios which include options, it is reasonable to assume 
that the analysis of low frequency returns is not a common requirement. However, it 
is important to note that for the lognormal case with constant parameters, the 
definition of RL-beta breaks down as the time interval tends to infinity. This is 
because it can only take the values of 0, 1 or infinity. In practice it is accepted that 
parameters change. Comparison of the estimated values of beta and RL-beta is an 
empirical question.

4. Other Models of Return

The preceding paragraphs and accompanying equations show that if portfolio and 
market returns are lognormal the RL-beta will often yield similar results to the 
traditional CAPM beta. It may be agued that the analysis based on the lognormal 
distribution is artificial to some extent. This is for the following reason. If it assumed 
that the market portfolio is lognormal, then in general asset returns and portfolio 
returns will not be lognormal. Similarly, if asset returns are lognormal then returns on 
portfolios, including the market portfolio, will not be lognormal. The complexities 
that arise if the lognormal distribution is used as a general model for returns becomes 
clear in papers like those due to Naus (1969) and Wu et al (2005). Mandelbrot (1997) 
argues against the use of the lognormal at all. The assumption of bivariate 
lognormality is nothing more than a convenience. This in itself may not necessarily 
cause either theoretical or practical difficulties in specific cases. However, bearing in 
mind that the definition of Β in equation (8.) does not require a specification 
distributional assumption to be made, there are strong reasons to considered other 
models for the probability distribution of returns. 

In his paper, R76 presents an example in which he assumes that returns are normally 
rather than lognormally distributed. However, under normality the parameter Β does 
not exist in all cases. To see this, consider the conditional distribution of pR given 

mR . The conditional expected value of the product b
mpp )R)(R(  1 , which is 

required to compute the numerator of iΒ defined at (8.) is

      


















 


b
m

m
b

m
pb

m

mm
pm

b
mpp R

μ

R
β

R

μR
βRRμRE

)1(

)1(

)1(

1

)1(

)(
|)1)((

1
. (15.)

Taking expected values over the distribution of mR reduces to the computation of the 

expected values of )1(,)1(  bb
mR . Because of the normality of mR this only exists if b

is less than ½. This does not contradict the requirement that b is positive, but does 
contradict the implication of equation (9.) which is that b is greater than ½. In such a 
case Β does not exist. For the case where b < ½ it is clear that

 














 


b
m

m
b

m
m

b
mmm R

μ

R
RRμRE

)1(

)1(

)1(

1
|)1)((

1
, (16.)
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and so ii βΒ  . Thus under normality beta and RL-beta are the same when the RL-

beta exists. 

5. Estimation of 

The implication of the two previous sections is that RL-beta plays a role in the 
analysis of portfolios whose returns are non-standard. As demonstrated in Isakov and 
Morard (2001) as well as in L99, this is likely to include portfolios which contain 
options. In this context, the phrase non-standard means that the returns do not follow 
elliptically symmetric or lognormal distributions. In such cases, the estimation of , 
which requires that the joint distribution of portfolio and market returns be specified, 
may not be a trivial task. An alternative method is to note that i may be written 
identically as

 
 

 
  m

i
b

mm

b
m

b
m

b
mi

i γ

γ

r1r

r1

r1

r1r
Β 







 







)(,cov

)(var

)(var

)(,cov
, (17.)

where iγ is the coefficient in the regression of ir on b
mr

 )1( . The parameter iΒ may 

thus be estimated from the regression

               ξrγΒγr b
mmi0i  )1( . (18.)

If the return on the market mr is treated as given and if both b and mγ are treated as 

non-stochastic, application of OLS gives the estimated value of iΒ together with its 

standard error. This method may be generalized if this is suggested by the behaviour 
of the estimated residuals. 

Given the discussion in Sections 3 and 4, it is natural to enquire whether  is a better 
measure of risk than beta. This may be done using a relatively little known test due to 
Harold Hotelling, Hotelling (1940). Given the choice of two independent variables to 
use in a simple regression, Hotelling’s test examines the equality of correlation of 
each of the independent variables with the dependent variable. Under the standard 
assumptions, the test statistic follows Student’s t distribution. Significantly positive 
(negative) values of the test statistic favour the first (second) independent variable. 
The details of the test are described in Appendix B4. Adcock (1973) shows that the 
test is equivalent to testing the equality of the residual variances from simple OLS 
regressions using each candidate independent variable separately.

                                               
4 The late Maurice Quenouille told a delightful story about the motivation for Hotelling’s test. The 
latter was concerned with predicting the weight of fully-grown cattle using either their girth or length 
from nose to tail at a pre-specified young age. In those days, the measurements had to be obtained 
manually. Because of the lack of computing facilities only one regressor was to be used. According to 
Quenouille, for obvious reasons of personal safety Hotelling hoped that the length measure would be a 
significantly better regressor than girth!
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In the empirical study described in Section 6, the first variable is excess returns on the 
market portfolio. The second is b

mm rγ-  )1( . Positive values of the test statistic and 
a computed one-tailed p-value of less than 1% say indicate a statistically significant 
preference for a model based on excess returns on the market portfolio, that is a 
preference for beta as a measure of risk. Negative values of the test statistic and a 
computed p-value in excess of 99% indicate a preference for RL-beta. 

However, this model needs to be used with some caution. Under an elliptically 
symmetric distribution the expected value of Ri conditional on Rm is given by equation 
(1.) and is a linear function of Rm. Under elliptical symmetry therefore the model at 
(18.) is misspecified. The implication of using it as a regression model is that the 
estimator of “alpha” is given by

                                   T/1ˆˆ
T

1t

b
i









 



mtmi0 rγΒrγ (19.)

where {rmt} is the time series of excess returns on the market portfolio and the 
symbol denotes an estimator. For returns at most frequencies of interest, elementary 
manipulations show that 

                                  mi0 γΒγ ˆˆ  . (20.)

Numerically, this is not generally close to zero since ii βΒ ˆˆ  and mγ is O(1). By 

contrast, even if the CAPM does not hold, alpha, which is defined as mii  and is 
therefore of the order of return, is small.  Furthermore, as shown in Section 6, the data 
used in the empirical study generally rejects the null hypothesis 0:H0 0γ but does 

not reject 0:H0 0 in the market model.

6. Empirical Study

The empirical study reported in this paper is based daily price data for 380 non-
financial UK stocks which were members of the UK FTSE350 index during the 
period January 1990 to December 2002. The FTSE350 index is taken as the market 
proxy and the risk free rate is the London overnight rate. The data set, which covers 
the period from 4th November 1993 until 3rd November 2003, was obtained from 
Datastream and from Barclays Global Investors. Prices are in Sterling and daily 
returns are computed in the usual way by taking the difference of the natural 
logarithm of price.  

As well as computations based on individual securities, this study reports results for 
simulated portfolios of stocks selected from this data set. A portfolio contains 5, 10, 
25, 50, 100, 200 or 300 stocks. For each case, the requisite stocks are chosen 
according to one of three different sampling schemes. These are as follows: equal 
probability of selection, probability of selection proportional to market capitalisation 
and probability of selection inversely proportional to market capitalisation. The 
second method of selection gives portfolios of large capitalisation stocks and the third 
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method portfolios of small cap stocks. For each selection, portfolio return is computed 
in two ways; namely by assuming equal weights or weights proportional to market 
capitalisation. For the purpose of this study, market capitalisation is recomputed each 
day using the previous 500 days of data. This entire sampling scheme thus gives 
7*3*2 = 42 different portfolios. This is repeated five times to give a sample of 210 
portfolios. The time series of returns for each portfolio commences on the first date 
for which there are valid returns for at least one of the selected stocks. Thus, a 
portfolio with, for example, five stocks may start as a holding in a single stock, with 
stocks 2 through 5 being added as they become available.

The analysis reported below is carried out for 5 successive non-overlapping blocks of 
500 days; that is approximately two years. The stocks that are included in the analysis 
for each block must have valid data for all 500 days. As is shown in Table 1 below, 
the number of stocks with a valid time series of returns is 364 for the most recent 
period which ends on 3rd November 2003. There are 269 stocks with valid data for the 
first 500 day period which ends on 4th March 1996. These five periods are referred to 
below as periods (i) through (v). For comparison purposes and to investigate the 
differences between estimated values of beta and RL-beta at lower frequencies, the 
analysis is repeated for 5 non-overlapping blocks of the corresponding weekly data. 
Each block contains 100 weeks. The actual start and end dates of the weekly blocks 
are slightly different from the dates of the corresponding blocks of daily data. This is 
because of public holidays. A similar exercise is performed for 2 blocks of four-
weekly data. These correspond to periods (i) and (ii) taken together and (iii) and (iv) 
taken together.

As noted in the introduction, this paper contains only the main results, with further 
details being available on request. To motivate the case for considering that there are 
stocks whose return distributions are not elliptically symmetric and for which 
therefore the RL-beta may be a more appropriate measure of risk, Table 1 shows an 
analysis of skewness and kurtosis for daily returns for individual stocks and for 
portfolios. The five panels in Table 1 correspond to each of the 500-day periods. Each 
panel contains two contingency tables, one for individual stocks and one for 
portfolios. The table entries are based on the percent probabilities associated with the 
skewness and kurtosis components of the Bera Jarque test. A stock is assigned to the 
skewed and kurtotic cell of the table if both of these percent probabilities are less than 
1. Otherwise, it is assigned to another cell of the table depending on the computed 
probabilities.

Table 1 about here

Taking the stock table on panel (i) as an exemplar, this table shows that 363 out of 
364 stocks exhibit kurtosis. Of these, 154 (about 42%) also exhibit skewness. These 
features are repeated qualitatively in each of the other nine contingency tables shown 
in Table 1. The overwhelming majority of stocks and portfolios exhibit kurtosis. A 
significant minority of stocks and portfolios also exhibit skewness. 
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The presence of kurtosis in the returns of a stock or portfolio does not rule out the 
possibility that a member of the elliptically symmetric class of distributions is an 
appropriate model. As discussed in Section 2 of this paper, in such cases there are 
strong theoretical reasons for expecting beta to be an appropriate measure of risk. 
However, for the substantial minority of stocks and portfolios that exhibit skewness 
there is a prima facie case to consider other measures of risk.

Table 2 about here

Table 2 contains a summary of the numbers of stocks and portfolios with skewed 
returns according to the skewness component of the Bera Jarque test. The first panel 
summarises the daily values from Table 1. The second panel shows the corresponding 
numbers for weekly returns for each of the 5 periods. The third panel shows the 
number of skewed stocks for periods (i) and (ii) and (iii) and (iv) based on four-
weekly data. The table confirms a well-known stylised fact of empirical data; the 
incidence of skewness tends to decline as the frequency of the data decreases. 

To investigate the potential for the use of the RL-beta and to compare it with the 
standard beta based on the market model, the following analysis was carried out for 
each of the five non-overlapping time periods for both stocks and portfolios. The 
standard market model was estimated for each stock (portfolio) using excess returns 
defined in the usual way. The RL-beta was also estimated using the regression method 
described in Section 5. The two approaches were compared using Hotelling’s test.  
The results from these investigations for stocks for period (i) ending on 3rd November 
2003 are shown in Table 3. The corresponding results for portfolios are shown in 
Table 4. 

Table 3 about here

The results are grouped into percentiles by considering the p-values of Hotelling’s 
test. Thus, as shown in panel (i) of Table 3, 17 stocks have a p-value of 0.01 or less, 
48 have a value of greater than 0.01 but less than or equal to 0.05 and so on. For the 
17 stocks in the first column, panel (ii) shows that the median value of the probability 
associated with the skewness component of the Bera Jarque test is 0.0244 and panel 
(iii) shows that the average value is 0.1670.  Panel (iv) gives average values for the 
estimated alpha in the market model and the average p-value. Panel (v) reports the 
same statistics for the alpha in the RL-beta model. Also shown in panel (v) for 
comparison purposes is the predicted value based on the approximate formula in 
equation (20.). Panel (vi) shows the average of the estimated betas and RL-betas and 
panel (vii) shows the average values of Hotelling’s test and the associated p-values. 

For the first two columns of the table, it may be concluded that the excess return on 
the market portfolio is significantly more highly correlated with stock returns than the 
variable, as defined at equation (8.), on which the RL-beta is based. For the 65 stocks 
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in these columns, beta is a better measure of performance than RL-beta. For the other 
columns of the table, accounting for 299 stocks, for which the p-value associated with 
Hotelling’s test is greater than 0.05, there is no significant difference between the two 
measures. 

There are several empirical results in Table 3 which merit some comment. First, as 
shown in panels (ii) and (iii), the probability associated with skewness in returns 
decreases as the one-tailed p-value of Hotelling’s test increases. Thus, for this data 
set, the presence of skewness in returns reduces the superiority of beta over RL-beta. 
However, even for the most skewed returns the positive average value of Hotelling’s 
test means that the RL-beta is never superior. Indeed, a detailed examination of the 
results failed to yield a single case where the value of Hotelling’s test is negative, 
which would have indicated a preference for RL-beta. 

Secondly, the estimated alphas under the market model fail on average to achieve 
significance. By contrast, the estimated RL-alphas are on average significantly 
different from zero. There is also a close correspondence between the estimated 
values and the values predicted by equation (20.).  The exception is the final column 
of the table, for which returns exhibit the most skewness. Finally, there is very close 
agreement between the two sets of estimated betas, thus confirming the theoretical 
predictions due originally to Leland (1999), as expanded in Section 3. 

It is not the purpose of this paper to comment in detail on all of the results that have 
led to Table 3. However, it is interesting to note from panels (ii), (iii) and (vi) that 
increasing skewness in returns leads on average to a decreasing value of the estimated 
beta. This indicates that there is a need to reconsider both beta and RL-beta in the 
context of models with econometric specifications that take skewness into account. 

Table 4 about here

Table 4 shows the comparable results for portfolios. The most striking difference 
between the two sets of results shown in Tables 3 and 4 is that for 184 portfolios out 
of 210 beta is a superior measure of performance than RL-beta. This finding is 
supported by the probabilities in panel (iii) which indicate that on average these 
portfolios do not exhibit skewness. However, the median values in panel (ii) indicate 
that beta may be better than RL-beta in some cases even in the presence of skewness 
as measured by the Bera Jarque test. The other conclusions that may be inferred from 
Table 4 are broadly similar to the findings reported for Table 3. In the interests of 
brevity, the corresponding results for period (ii) which ended on 3rd December 2001 
are omitted. These are generally similar to those summarised above. For the earlier 
time periods, (iii) – (v), there is little evidence of significant differences between the 
two measures based on daily data. 

Table 5 reports the results of an analysis of the differences between the estimated 
values of beta and RL-beta. This is done for stocks (panel A) and portfolios (panel B) 
and for daily and weekly returns for all 5 time periods. For four-weekly returns it is 
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done for the two time periods. The table confirms that the differences between the 
estimated values of beta and RL-beta increase as the frequency of returns decreases. 
Inspection of the rows entitled “median-abs-diff” and “median-abs-%diff” make it 
clear that in general the difference between beta and RL-beta is small even for four-
weekly data. However, as the rows entitled “Max” imply, there is a small number of 
stocks for which the difference is large. Detailed inspection of computed values of 
beta and RL-beta shows that these are stocks for which both estimates are numerically 
quite close to zero; that is they are more or less uncorrelated with returns on the 
market index.

Table 5 about here

7. Summary and Conclusions

It is shown that there are situations in which the theoretical values of the RL-beta will 
be similar to the traditional measure based on the CAPM. For the case where returns 
have a normal distribution, it is shown that either the RL-beta reduces exactly to the 
conventional beta or that it does not exist. It is therefore conjectured that the modified 
measure will be useful for portfolios which have non-symmetric return distributions. 
It is shown how to estimate RL-beta using regression and how to compare the 
resulting estimator with the traditional estimated beta using a test due to Hotelling 
(1940). 

The empirical study is based on daily returns of UKFTSE350 stocks and on simulated 
portfolios of such stocks. The study provides some evidence for the period 2001-2003 
that in the absence of skewness beta is to be preferred as a measure of risk. However, 
for the same period, even in the presence of skewness there is no evidence to suggest 
the superiority of the RL-beta. For earlier time periods, there is little evidence that 
indicates any statistically significant difference between the two models of risk 
regardless of the degree of skewness present in returns. The empirical results confirm 
one of the theoretical predictions, namely that when regression is used for estimation 
the variable used in the RL-beta induces a non-zero value of alpha. The empirical 
evidence supports the view that there will be larger differences at lower frequencies 
between the estimated values of beta and RL-beta. For most stocks, these differences 
are found to be numerically small. The data set studied in this paper leads to the 
inference that beta and alpha are still valid measures of risk and excess performance, 
at least when compared with RL-beta.

It is planned that further work in this area will investigate the application of the RL-
beta to portfolios which contain stock options and which may therefore exhibit more 
extreme degrees of skewness.

Appendix A – Derivation of Equation 12

Under the given assumptions p is, Leland (1997):
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Using the assumptions of Section 3, equation (7.) may be written as:
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Dividing throughout by  , expanding the exponential functions and ignoring terms 
with powers higher than two gives:
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Appendix B – Hotelling’s Test

This is a test of the equality of correlation of a dependent variable Y with two 
independent variables, X1 and X2. The aim is to select the independent variable that is 
significantly more highly correlated with Y.  Hotelling’s test proceeds as follows. 
First, standardise each X so that it has sample mean equal to zero and sample variance 
equal to one. In this appendix, the standardised variables will be denoted X1,2. For a 
sample of N observations, the sample correlation coefficient of X1 with X2 is:
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The new variables have sample means equal to zero. In addition:
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Since the x1,2 are linear transformations of the original variables, a regression of Y on 
X1,2 may be written as:

  2211 xxY

Hotelling shows that the OLS estimators of the three parameters are, respectively:
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The null hypothesis of equal correlation is tested by the t statistic:
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t ,

where 2̂ is the usual estimator of residual variance. The degrees of freedom are equal 
to N-3. Significant positive (negative) values of t indicate X1 (X2).
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Table 1 – Analysis of Skewness and Kurtosis for Daily Returns on 
FTSE350 Stocks and Portfolios

Based on daily returns on FTSE350 non-financial stocks from 5th April 1994 to 3rd November 2003

Individual stocks Portfolios

(i) From 04/12/01 to 03/11/03 
Not-kurtotic Kurtotic Total Not-kurtotic Kurtotic Total

Not-skewed 0 154 154 3 157 160
Skewed 1 209 210 0 50 50
Total 1 363 364 3 207 210

(ii) From 04/01/00 to 03/12/01 
Not-kurtotic Kurtotic Total Not-kurtotic Kurtotic Total

Not-skewed 4 125 129 12 84 96
Skewed 0 211 211 0 114 114
Total 4 336 340 12 198 210

(iii) From 03/02/98 to 03/01/00
Not-kurtotic Kurtotic Total Not-kurtotic Kurtotic Total

Not-skewed 1 90 91 4 99 103
Skewed 0 235 235 0 107 107
Total 1 325 326 4 206 210

(iv) From 05/03/96 to 02/02/98 
Not-kurtotic Kurtotic Total Not-kurtotic Kurtotic Total

Not-skewed 0 71 71 1 63 64
Skewed 0 223 223 0 146 146
Total 0 294 294 1 209 210

(v) From 05/04/94 to 04/03/96
Not-kurtotic Kurtotic Total Not-kurtotic Kurtotic Total

Not-skewed 10 80 90 57 40 97
Skewed 1 178 179 5 108 113
Total 11 258 269 62 148 210

The table shows an analysis of skewness and kurtosis for daily returns for individual stocks and for portfolios. The 
panels (i) through (v) correspond to the 500-day periods. Each panel contains two contingency tables, one for 
individual stocks and one for portfolios. The table entries are based on the percent probabilities associated with the 
skewness and kurtosis components of the Bera Jarque test. A stock is assigned to the skewed and kurtotic cell of the 
table if both of these percent probabilities are less than 1. Otherwise, it is assigned to another cell of the table 

depending on the computed probabilities.
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Table 2 – Summary of the Number of FTSE350 Stocks and 
Portfolios Exhibiting Skewness

Based on daily and weekly returns on FTSE350 non-financial stocks from 5th April 1994 to 3rd

November 2003, and on four-weekly returns from 22nd March 1996  to 3rd November 2003.

Stocks Portfolios

Period Number %/age Number %/age

Daily returns

(i) 210 57.69 50 23.81
(ii) 211 62.06 114 54.29
(iii) 235 72.09 107 50.95
(iv) 223 75.85 146 69.52
(v) 179 66.54 113 53.81

Weekly returns

(i) 88 24.18 11 5.24
(ii) 86 25.29 90 42.86
(iii) 105 32.21 48 22.86
(iv) 100 34.01 8 3.81
(v) 81 30.11 16 7.62

Monthly returns

(i) and (ii) 63 18.53 69 32.86
(iii) and (iv) 28 9.46 43 20.48

The table contains a summary of the numbers of stocks and portfolios with skewed returns according 
to the skewness component of the Bera Jarque test. The first panel summarises the daily values from 
Table 1. The second panel shows the corresponding numbers for weekly returns for each of the 5 
periods. The third panel shows the number of skewed stocks for periods (i) and (ii) and (iii) and (iv) 
based on four-weekly data. Columns 1 and 3 show the numbers of skewed stocks and portfolios 
respectively. Columns 2 and 4 show the corresponding percentages.
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Table 3 – Comparison of Beta and RL-beta for Daily Returns on FTSE350 
Stocks for the period 4th December 2001 to 3rd November 2003

Based on 500 daily returns on FTSE350 non-financial stocks. 

< 0.01 (0.01,0.05] (0.05,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5]

(i) Number of observations

17 48 39 43 83 103 31

(ii)  Probabilities for skewness component of Bera Jarque Test (median values)

0.0244 0.0779 0.0106 0.0044 0.0032 0.0000 0.0000

(iii)  Probabilities for skewness component of Bera Jarque Test (mean values)

0.1670 0.2861 0.2624 0.1902 0.1436 0.0500 0.0491

(iv) Estimated alpha in market model

Coefficient -0.0001 0.0000 0.0002 -0.0001 0.0001 0.0000 0.0000
P-value 0.6415 0.6377 0.6128 0.6052 0.5988 0.5507 0.4554

(V) Estimated RL alpha

Coefficient -0.6068 -0.5884 -0.5053 -0.3939 -0.3189 -0.1729 -0.0775
Predicted -0.6064 -0.5881 -0.5053 -0.3939 -0.3192 -0.1732 -0.0780
P-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.1889

(vi) Estimated market model and RL betas 

MM 1.0982 1.0650 0.9151 0.7134 0.5780 0.3137 0.1412
RL 1.0983 1.0653 0.9151 0.7130 0.5774 0.3131 0.1402

(vii) Hotelling's Test

Test 2.6401 1.9614 1.4762 0.9903 0.6637 0.3903 0.1489
P-value 0.0051 0.0271 0.0714 0.1628 0.2545 0.3486 0.4409

The results are grouped into percentiles by considering the p-values of Hotelling’s test. These form the columns of the 
table. Panel (i) shows the number of stocks in each category. Panel (ii) shows the median value of the probability 
associated with the skewness component of the Bera Jarque test. Panel (iii) shows the average value. Panel (iv) gives 
average values for the estimated alpha in the market model and the average p-value. Panel (v) reports the same statistics 
for the alpha in the RL-beta model and for comparison purposes the predicted value based on equation (20.). Panel (vi) 
shows the average of the estimated betas and RL-betas. Panel (vii) shows the average values of Hotelling’s test and the 
associated p-values. 
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Table 4 – Comparison of Beta and RL-beta for Daily Returns on Simulated 
Portfolios of FTSE350 Stocks for the period 4th December 2001 to 3rd

November 2003

Based on 500 daily returns on FTSE350 non-financial stocks. 

< 0.01 (0.01,0.05] (0.05,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4]

(i) Number of observations

155 29 12 9 4 1

(ii)  Probabilities for skewness component of Bera Jarque Test (median values)

0.2379 0.0076 0.0082 0.3936 0.0006 0.0000

(iii)  Probabilities for skewness component of Bera Jarque Test (mean values)

Bjskewp 0.3416 0.1725 0.1744 0.4096 0.0430 0.0000

(iv) Estimated alpha in market model

Coefficient 0.0001 0.0002 0.0000 -0.0003 0.0001 -0.0011
P-value 0.5051 0.6091 0.5837 0.4709 0.7728 0.3567

(v) Estimated RL alpha

Coefficient -0.4760 -0.3085 -0.2995 -0.2813 -0.1694 -0.2602
Predicted -0.4760 -0.3087 -0.2995 -0.2809 -0.1700 -0.2587
P-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(vi) Estimated market model and RL betas 

MM 0.8621 0.5591 0.5424 0.5088 0.3078 0.4685
RL 0.8619 0.5588 0.5420 0.5086 0.3069 0.4691

(vii) Hotelling's Test

Test 13.0681 1.9801 1.4586 1.0085 0.6968 0.5011
P-value 0.0008 0.0265 0.0737 0.1589 0.2439 0.3083

The results are grouped into percentiles by considering the p-values of Hotelling’s test. These form the 
columns of the table. Panel (i) shows the number of portfolios in each category. Panel (ii) shows the 
median value of the probability associated with the skewness component of the Bera Jarque test. Panel 
(iii) shows the average value. Panel (iv) gives average values for the estimated alpha in the market 
model and the average p-value. Panel (v) reports the same statistics for the alpha in the RL-beta model 
and for comparison purposes the predicted value based on equation (20.). Panel (vi) shows the average 
of the estimated betas and RL-betas. Panel (vii) shows the average values of Hotelling’s test and the 
associated p-values. 
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Table 5 – Analysis of the Difference Between Estimated Values of Beta 
and RL-beta.

Period

(i) (ii) (iii) (iv) (v)

A Stocks

(i) Daily

Max-abs-diff 0.01 0.02 0.01 0.05 0.02

Median-abs-diff 0.00 0.00 0.00 0.01 0.00

Max-abs-%diff 8.28 177.93 28.00 94.15 23.11

Median-abs-%diff 0.12 0.72 0.62 1.40 0.42

(ii) Weekly

Max-abs-diff 0.03 0.24 0.07 0.07 0.07

Median-abs-diff 0.01 0.02 0.01 0.01 0.01

Max-abs-%diff 9.68 13962.07 259.95 303.64 353.84

Median-abs-%diff 0.71 2.44 1.57 2.46 1.22

(iii) Monthly

Max-abs-diff 0.14 0.26

Median-abs-diff 0.02 0.03

Max-abs-%diff 244.00 1358.00

Median-abs-%diff 2.07 3.27

B Portfolios

(i) Daily

Max-abs-diff 0.00 0.01 0.01 0.03 0.01

Median-abs-diff 0.00 0.00 0.00 0.01 0.00

Max-abs-%diff 0.46 2.39 2.74 4.25 1.56

Median-abs-%diff 0.04 0.32 0.24 0.79 0.17

(ii) Weekly

Max-abs-diff 0.01 0.07 0.03 0.05 0.04

Median-abs-diff 0.00 0.01 0.01 0.01 0.00

Max-abs-%diff 1.84 6.90 3.99 6.70 3.92

Median-abs-%diff 0.19 1.51 0.69 0.85 0.21

(iii) Monthly

Max-abs-diff 0.07 0.08

Median-abs-diff 0.01 0.01

Max-abs-%diff 5.35 9.07

Median-abs-%diff 1.19 1.52

The table reports the results of an analysis of the differences between the estimated values of beta and RL-beta. 
This is done for stocks (panel A) and portfolios (panel B) and for daily and weekly returns for all 5 time periods. 
For four-weekly returns it is done for the two time periods. The columns of the table correspond to the five time 
periods defined in Table 1. In each panel and sub-panel of the table, the four rows report the maximum and median 
absolute difference and the maximum and median absolute percentage difference.
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