130 research outputs found

    Bushfires and Mothers’ Mental Health in Pregnancy and Recent Post-Partum

    Get PDF
    Background: The compounding effects of climate change catastrophes such as bushfires and pandemics impose significant burden on individuals, societies, and their economies. The enduring effects of such syndemics on mental health remain poorly understood, particularly for at-risk populations (e.g., pregnant women and newborns). The aim of this study was to investigate the impact of direct and indirect exposure to the 2019/20 Australian Capital Territory and South-Eastern New South Wales bushfires followed by COVID-19 on the mental health and wellbeing of pregnant women and mothers with newborn babies. Methods: All women who were pregnant, had given birth, or were within three months of conceiving during the 2019/2020 bushfires, lived within the catchment area, and provided consent were invited to participate. Those who consented were asked to complete three online surveys. Mental health was assessed with the DASS-21 and the WHO-5. Bushfire, smoke, and COVID-19 exposures were assessed by self-report. Cross-sectional associations between exposures and mental health measures were tested with hierarchical regression models. Results: Of the women who participated, and had minimum data (n = 919), most (&gt;75%) reported at least one acute bushfire exposure and 63% reported severe smoke exposure. Compared to Australian norms, participants had higher depression (+12%), anxiety (+35%), and stress (+43%) scores. Women with greater exposure to bushfires/smoke but not COVID-19 had poorer scores on all mental health measures. Conclusions: These findings provide novel evidence that the mental health of pregnant women and mothers of newborn babies is vulnerable to major climate catastrophes such as bushfires.</p

    Persistence of the immune response induced by BCG vaccination.

    Get PDF
    BACKGROUND: Although BCG vaccination is recommended in most countries of the world, little is known of the persistence of BCG-induced immune responses. As novel TB vaccines may be given to boost the immunity induced by neonatal BCG vaccination, evidence concerning the persistence of the BCG vaccine-induced response would help inform decisions about when such boosting would be most effective. METHODS: A randomised control study of UK adolescents was carried out to investigate persistence of BCG immune responses. Adolescents were tested for interferon-gamma (IFN-gamma) response to Mycobacterium tuberculosis purified protein derivative (M.tb PPD) in a whole blood assay before, 3 months, 12 months (n = 148) and 3 years (n = 19) after receiving teenage BCG vaccination or 14 years after receiving infant BCG vaccination (n = 16). RESULTS: A gradual reduction in magnitude of response was evident from 3 months to 1 year and from 1 year to 3 years following teenage vaccination, but responses 3 years after vaccination were still on average 6 times higher than before vaccination among vaccinees. Some individuals (11/86; 13%) failed to make a detectable antigen-specific response three months after vaccination, or lost the response after 1 (11/86; 13%) or 3 (3/19; 16%) years. IFN-gamma response to Ag85 was measured in a subgroup of adolescents and appeared to be better maintained with no decline from 3 to 12 months. A smaller group of adolescents were tested 14 years after receiving infant BCG vaccination and 13/16 (81%) made a detectable IFN-gamma response to M.tb PPD 14 years after infant vaccination as compared to 6/16 (38%) matched unvaccinated controls (p = 0.012); teenagers vaccinated in infancy were 19 times more likely to make an IFN-gamma response of > 500 pg/ml than unvaccinated teenagers. CONCLUSION: BCG vaccination in infancy and adolescence induces immunological memory to mycobacterial antigens that is still present and measurable for at least 14 years in the majority of vaccinees, although the magnitude of the peripheral blood response wanes from 3 months to 12 months and from 12 months to 3 years post vaccination. The data presented here suggest that because of such waning in the response there may be scope for boosting anti-tuberculous immunity in BCG vaccinated children anytime from 3 months post-vaccination. This supports the prime boost strategies being employed for some new TB vaccines currently under development

    Analysis of host responses to Mycobacterium tuberculosis antigens in a multi-site study of subjects with different TB and HIV infection states in sub-Saharan Africa.

    Get PDF
    BACKGROUND: Tuberculosis (TB) remains a global health threat with 9 million new cases and 1.4 million deaths per year. In order to develop a protective vaccine, we need to define the antigens expressed by Mycobacterium tuberculosis (Mtb), which are relevant to protective immunity in high-endemic areas. METHODS: We analysed responses to 23 Mtb antigens in a total of 1247 subjects with different HIV and TB status across 5 geographically diverse sites in Africa (South Africa, The Gambia, Ethiopia, Malawi and Uganda). We used a 7-day whole blood assay followed by IFN-γ ELISA on the supernatants. Antigens included PPD, ESAT-6 and Ag85B (dominant antigens) together with novel resuscitation-promoting factors (rpf), reactivation proteins, latency (Mtb DosR regulon-encoded) antigens, starvation-induced antigens and secreted antigens. RESULTS: There was variation between sites in responses to the antigens, presumably due to underlying genetic and environmental differences. When results from all sites were combined, HIV- subjects with active TB showed significantly lower responses compared to both TST(-) and TST(+) contacts to latency antigens (Rv0569, Rv1733, Rv1735, Rv1737) and the rpf Rv0867; whilst responses to ESAT-6/CFP-10 fusion protein (EC), PPD, Rv2029, TB10.3, and TB10.4 were significantly higher in TST(+) contacts (LTBI) compared to TB and TST(-) contacts fewer differences were seen in subjects with HIV co-infection, with responses to the mitogen PHA significantly lower in subjects with active TB compared to those with LTBI and no difference with any antigen. CONCLUSIONS: Our multi-site study design for testing novel Mtb antigens revealed promising antigens for future vaccine development. The IFN-γ ELISA is a cheap and useful tool for screening potential antigenicity in subjects with different ethnic backgrounds and across a spectrum of TB and HIV infection states. Analysis of cytokines other than IFN-γ is currently on-going to determine correlates of protection, which may be useful for vaccine efficacy trials

    Impact of Nitisinone on the Cerebrospinal Fluid Metabolome of a Murine Model of Alkaptonuria

    Get PDF
    BackgroundNitisinone-induced hypertyrosinaemia is well documented in Alkaptonuria (AKU), and there is uncertainty over whether it may contribute to a decline in cognitive function and/or mood by altering neurotransmitter metabolism. The aim of this work was to evaluate the impact of nitisinone on the cerebrospinal fluid (CSF) metabolome in a murine model of AKU, with a view to providing additional insight into metabolic changes that occur following treatment with nitisinone.Methods17 CSF samples were collected from BALB/c Hgd-/- mice (n = 8, treated with nitisinone-4 mg/L and n = 9, no treatment). Samples were diluted 1:1 with deionised water and analysed using a 1290 Infinity II liquid chromatography system coupled to a 6550 quadrupole time-of-flight mass spectrometry (Agilent, Cheadle, UK). Raw data were processed using a targeted feature extraction algorithm and an established in-house accurate mass retention time database. Matched entities (±10 ppm theoretical accurate mass and ±0.3 min retention time window) were filtered based on their frequency and variability. Experimental groups were compared using a moderated t-test with Benjamini-Hochberg false-discovery rate adjustment.ResultsL-Tyrosine, N-acetyl-L-tyrosine, γ-glutamyl-L-tyrosine, p-hydroxyphenylacetic acid, and 3-(4-hydroxyphenyl)lactic acid were shown to increase in abundance (log2 fold change 2.6-6.9, 3/5 were significant p &lt; 0.05) in the mice that received nitisinone. Several other metabolites of interest were matched, but no significant differences were observed, including the aromatic amino acids phenylalanine and tryptophan, and monoamine metabolites adrenaline, 3-methoxy-4-hydroxyphenylglycol, and octopamine.ConclusionsEvaluation of the CSF metabolome of a murine model of AKU revealed a significant increase in the abundance of a limited number of metabolites following treatment with nitisinone. Further work is required to understand the significance of these findings and the mechanisms by which the altered metabolite abundances occur

    Comprehensive Biotransformation Analysis of Phenylalanine-Tyrosine Metabolism Reveals Alternative Routes of Metabolite Clearance in Nitisinone-Treated Alkaptonuria

    Get PDF
    Metabolomic analyses in alkaptonuria (AKU) have recently revealed alternative pathways in phenylalanine-tyrosine (phe-tyr) metabolism from biotransformation of homogentisic acid (HGA), the active molecule in this disease. The aim of this research was to study the phe-tyr metabolic pathway and whether the metabolites upstream of HGA, increased in nitisinone-treated patients, also undergo phase 1 and 2 biotransformation reactions. Metabolomic analyses were performed on serum and urine from patients partaking in the SONIA 2 phase 3 international randomised-controlled trial of nitisinone in AKU (EudraCT no. 2013-001633-41). Serum and urine samples were taken from the same patients at baseline (pre-nitisinone) then at 24 and 48 months on nitisinone treatment (patients N = 47 serum; 53 urine) or no treatment (patients N = 45 serum; 50 urine). Targeted feature extraction was performed to specifically mine data for the entire complement of theoretically predicted phase 1 and 2 biotransformation products derived from phenylalanine, tyrosine, 4-hydroxyphenylpyruvic acid and 4-hydroxyphenyllactic acid, in addition to phenylalanine-derived metabolites with known increases in phenylketonuria. In total, we observed 13 phase 1 and 2 biotransformation products from phenylalanine through to HGA. Each of these products were observed in urine and two were detected in serum. The derivatives of the metabolites upstream of HGA were markedly increased in urine of nitisinone-treated patients (fold change 1.2–16.2) and increases in 12 of these compounds were directly proportional to the degree of nitisinone-induced hypertyrosinaemia (correlation coefficient with serum tyrosine = 0.2–0.7). Increases in the urinary phenylalanine metabolites were also observed across consecutive visits in the treated group. Nitisinone treatment results in marked increases in a wider network of phe-tyr metabolites than shown before. This network comprises alternative biotransformation products from the major metabolites of this pathway, produced by reactions including hydration (phase 1) and bioconjugation (phase 2) of acetyl, methyl, acetylcysteine, glucuronide, glycine and sulfate groups. We propose that these alternative routes of phe-tyr metabolism, predominantly in urine, minimise tyrosinaemia as well as phenylalanaemia

    Metabolomic studies in the inborn error of metabolism alkaptonuria reveal new biotransformations in tyrosine metabolism

    Get PDF
    Alkaptonuria (AKU) is an inherited disorder of tyrosine metabolism caused by lack of active enzyme homogentisate 1,2-dioxygenase (HGD). The primary consequence of HGD deficiency is increased circulating homogentisic acid (HGA), the main agent in the pathology of AKU disease. Here we report the first metabolomic analysis of AKU homozygous Hgd knockout (Hgd(−/−)) mice to model the wider metabolic effects of Hgd deletion and the implication for AKU in humans. Untargeted metabolic profiling was performed on urine from Hgd(−/−) AKU (n = 15) and Hgd(+/−) non-AKU control (n = 14) mice by liquid chromatography high-resolution time-of-flight mass spectrometry (Experiment 1). The metabolites showing alteration in Hgd(−/−) were further investigated in AKU mice (n = 18) and patients from the UK National AKU Centre (n = 25) at baseline and after treatment with the HGA-lowering agent nitisinone (Experiment 2). A metabolic flux experiment was carried out after administration of (13)C-labelled HGA to Hgd(−/−)(n = 4) and Hgd(+/−)(n = 4) mice (Experiment 3) to confirm direct association with HGA. Hgd(−/−) mice showed the expected increase in HGA, together with unexpected alterations in tyrosine, purine and TCA-cycle pathways. Metabolites with the greatest abundance increases in Hgd(−/−) were HGA and previously unreported sulfate and glucuronide HGA conjugates, these were decreased in mice and patients on nitisinone and shown to be products from HGA by the (13)C-labelled HGA tracer. Our findings reveal that increased HGA in AKU undergoes further metabolism by mainly phase II biotransformations. The data advance our understanding of overall tyrosine metabolism, demonstrating how specific metabolic conditions can elucidate hitherto undiscovered pathways in biochemistry and metabolism

    Evaluation of cytokine responses against novel Mtb antigens as diagnostic markers for TB disease.

    Get PDF
    OBJECTIVE: We investigated the accuracy of host markers detected in Mtb antigen-stimulated whole blood culture supernatant in the diagnosis of TB. METHODS: Prospectively, blood from 322 individuals with presumed TB disease from six African sites was stimulated with four different Mtb antigens (Rv0081, Rv1284, ESAT-6/CFP-10, and Rv2034) in a 24 h whole blood stimulation assay (WBA). The concentrations of 42 host markers in the supernatants were measured using the Luminex multiplex platform. Diagnostic biosignatures were investigated through the use of multivariate analysis techniques. RESULTS: 17% of the participants were HIV infected, 106 had active TB disease and in 216 TB was excluded. Unstimulated concentrations of CRP, SAA, ferritin and IP-10 had better discriminating ability than markers from stimulated samples. Accuracy of marker combinations by general discriminant analysis (GDA) identified a six analyte model with 77% accuracy for TB cases and 84% for non TB cases, with a better performance in HIV uninfected patients. CONCLUSIONS: A biosignature of 6 cytokines obtained after stimulation with four Mtb antigens has moderate potential as a diagnostic tool for pulmonary TB disease individuals and stimulated marker expression had no added value to unstimulated marker performance

    Studies in alkaptonuria reveal new roles beyond drug clearance for phase I and II biotransformations in tyrosine metabolism

    Get PDF
    AbstractBackground and Purposealkaptonuria (AKU) is an inherited disorder of tyrosine metabolism caused by lack of the enzyme homogentisate 1,2-dioxygenase (HGD). The primary biochemical consequence of HGD-deficiency is increased circulating homogentisic acid (HGA), which is central to AKU disease pathology. The aim of this study was to investigate the wider metabolic consequences of targeted Hgd disruption.Experimental Approachthe first metabolomic analysis of the Hgd−/− AKU mouse model was performed. Urinary metabolites altered in Hgd−/− were further validated by showing that the HGA-lowering drug nitisinone reversed their direction of alteration in AKUKey Resultscomparison of Hgd−/− (AKU) versus Hgd+/− (heterozygous control) urine revealed increases in HGA and a group of 8 previously unreported HGA-derived transformation products from phase I and II metabolism. HGA biotransformation products HGA-sulfate, HGA-glucuronide, HGA-hydrate and hydroxymethyl-HGA were also decreased in urine from both mice and patients with AKU on the HGA-lowering agent nitisinone. Hgd knockout also revealed a host of previously unrecognised associations between tyrosine, purine and TCA cycle metabolic pathways.Conclusion and ImplicationsAKU is rare, but our findings further what is currently understood about tyrosine metabolism more generally, and show for the first time that phase I and II detoxification is recruited to prevent accumulation of endogenously-produced metabolites in inborn errors of metabolism. The data highlight the misconception that phase I and II metabolic biotransformations are reserved solely for drug clearance; these are ancient mechanisms, which represent new potential treatment targets in inherited metabolic diseases.Abstract FigureBullet point summaryWhat is already known Increased circulating homogentisic acid is central to disease pathology in the inherited metabolic disease alkaptonuriaThe Hgd knockout mouse, created in our laboratory, accurately models human alkaptonuriaWhat this study adds Phase I and II biotransformations are recruited in alkaptonuria for detoxification of homogentisic acidThese data challenge misconceptions that phase I and II metabolism is solely for drug clearanceClinical significance Phase I and II metabolic processes represent new treatment targets in inherited metabolic diseasesThe molecular pathology of AKU extends much further than the known alteration to tyrosine metabolism</jats:sec

    A Comprehensive LC-QTOF-MS Metabolic Phenotyping Strategy: Application to Alkaptonuria.

    Get PDF
    BACKGROUND:Identification of unknown chemical entities is a major challenge in metabolomics. To address this challenge, we developed a comprehensive targeted profiling strategy, combining 3 complementary liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) techniques and in-house accurate mass retention time (AMRT) databases established from commercial standards. This strategy was used to evaluate the effect of nitisinone on the urinary metabolome of patients and mice with alkaptonuria (AKU). Because hypertyrosinemia is a known consequence of nitisinone therapy, we investigated the wider metabolic consequences beyond hypertyrosinemia. METHODS:A total of 619 standards (molecular weight, 45-1354 Da) covering a range of primary metabolic pathways were analyzed using 3 liquid chromatography methods-2 reversed phase and 1 normal phase-coupled to QTOF-MS. Separate AMRT databases were generated for the 3 methods, comprising chemical name, formula, theoretical accurate mass, and measured retention time. Databases were used to identify chemical entities acquired from nontargeted analysis of AKU urine: match window theoretical accurate mass ±10 ppm and retention time ±0.3 min. RESULTS:Application of the AMRT databases to data acquired from analysis of urine from 25 patients with AKU (pretreatment and after 3, 12, and 24 months on nitisinone) and 18 HGD -/- mice (pretreatment and after 1 week on nitisinone) revealed 31 previously unreported statistically significant changes in metabolite patterns and abundance, indicating alterations to tyrosine, tryptophan, and purine metabolism after nitisinone administration. CONCLUSIONS:The comprehensive targeted profiling strategy described here has the potential of enabling discovery of novel pathways associated with pathogenesis and management of AKU

    Conditional targeting in mice reveals that hepatic homogentisate 1,2-dioxygenase activity is essential in reducing circulating homogentisic acid and for effective therapy in the genetic disease alkaptonuria.

    Get PDF
    Alkaptonuria is an inherited disease caused by homogentisate 1,2-dioxygenase (HGD) deficiency. Circulating homogentisic acid (HGA) is elevated and deposits in connective tissues as ochronotic pigment. In this study, we aimed to define developmental and adult HGD tissue expression and determine the location and amount of gene activity required to lower circulating HGA and rescue the alkaptonuria phenotype. We generated an alkaptonuria mouse model using a knockout-first design for the disruption of the HGD gene. Hgd tm1a -/- mice showed elevated HGA and ochronosis in adulthood. LacZ staining driven by the endogenous HGD promoter was localised to only liver parenchymal cells and kidney proximal tubules in adulthood, commencing at E12.5 and E15.5 respectively. Following removal of the gene trap cassette to obtain a normal mouse with a floxed 6th HGD exon, a double transgenic was then created with Mx1-Cre which conditionally deleted HGD in liver in a dose dependent manner. 20% of HGD mRNA remaining in liver did not rescue the disease, suggesting that we need more than 20% of liver HGD to correct the disease in gene therapy. Kidney HGD activity which remained intact reduced urinary HGA, most likely by increased absorption, but did not reduce plasma HGA nor did it prevent ochronosis. In addition, downstream metabolites of exogenous 13C6-HGA, were detected in heterozygous plasma, revealing that hepatocytes take up and metabolise HGA. This novel alkaptonuria mouse model demonstrated the importance of targeting liver for therapeutic intervention, supported by our observation that hepatocytes take up and metabolise HGA
    • …
    corecore