17 research outputs found

    Environment Behavior Models for Scenario Generation and Testing Automation

    Get PDF
    In Proceedings of the First International Workshop on Advances in Model-Based Software Testing (A-MOST'05), the 27th International Conference on Software Engineering ICSE’05, May 15-16, 2005, St. Louis, USAThis paper suggests an approach to automatic scenario generation from environment models for testing of real-time reactive systems. The behavior of the system is defined as a set of events (event trace) with two basic relations: precedence and inclusion. The attributed event grammar (AEG) specifies possible event traces and provides a uniform approach for automatically generating, executing, and analyzing test cases. The environment model includes a description of hazardous states in which the system may arrive and makes it possible to gather statistics for system safety assessment. The approach is supported by a generator that creates test cases from the AEG models. We demonstrate the approach with case studies of prototypes for the safety-critical computer-assisted resuscitation algorithm (CARA) software for a casualty intravenous fluid infusion pump and the Paderborn Shuttle System

    Review and analysis of fire and explosion accidents in maritime transportation

    Get PDF
    The globally expanding shipping industry has several hazards such as collision, capsizing, foundering, grounding, stranding, fire, and explosion. Accidents are often caused by more than one contributing factor through complex interaction. It is crucial to identify root causes and their interactions to prevent and understand such accidents. This study presents a detailed review and analysis of fire and explosion accidents that occurred in the maritimetransportation industry during 1990–2015. The underlying causes of fire and explosion accidents are identified and analysed. This study also reviewed potential preventative measures to prevent such accidents. Additionally, this study compares properties of alternative fuels and analyses their effectiveness in mitigating fire and explosionhazards. It is observed that Cryogenic Natural Gas (CrNG), Liquefied Natural Gas (LNG) and methanol have properties more suitable than traditional fuels in mitigating fire risk and appropriate management of their hazards could make them a safer option to traditional fuels. However, for commercial use at this stage, there exist several uncertainties due to inadequate studies, and technological immaturity. This study provides an insight into fire and explosion accident causation and prevention, including the prospect of using alternative fuels for mitigating fire and explosion risks in maritime transportation

    Environment behavior models for scenario generation and testing automation

    No full text
    corecore