694 research outputs found

    Deformation of Codimension-2 Surface and Horizon Thermodynamics

    Full text link
    The deformation equation of a spacelike submanifold with an arbitrary codimension is given by a general construction without using local frames. In the case of codimension-1, this equation reduces to the evolution equation of the extrinsic curvature of a spacelike hypersurface. In the more interesting case of codimension-2, after selecting a local null frame, this deformation equation reduces to the well known (cross) focusing equations. We show how the thermodynamics of trapping horizons is related to these deformation equations in two different formalisms: with and without introducing quasilocal energy. In the formalism with the quasilocal energy, the Hawking mass in four dimension is generalized to higher dimension, and it is found that the deformation of this energy inside a marginal surface can be also decomposed into the contributions from matter fields and gravitational radiation as in the four dimension. In the formalism without the quasilocal energy, we generalize the definition of slowly evolving future outer trapping horizons proposed by Booth to past trapping horizons. The dynamics of the trapping horizons in FLRW universe is given as an example. Especially, the slowly evolving past trapping horizon in the FLRW universe has close relation to the scenario of slow-roll inflation. Up to the second order of the slowly evolving parameter in this generalization, the temperature (surface gravity) associated with the slowly evolving trapping horizon in the FLRW universe is essentially the same as the one defined by using the quasilocal energy.Comment: Latex, 61 pages, no figures; v2, type errors corrected; v3, references and comments are added, English is improved, to appear in JHE

    Agreed Definitions and a Shared Vision for New Standards in Stroke Recovery Research: The Stroke Recovery and Rehabilitation Roundtable Taskforce

    Get PDF
    The first Stroke Recovery and Rehabilitation Roundtable established a game changing set of new standards for stroke recovery research. Common language and definitions were required to develop an agreed framework spanning the four working groups: translation of basic science, biomarkers of stroke recovery, measurement in clinical trials and intervention development and reporting. This paper outlines the working definitions established by our group and an agreed vision for accelerating progress in stroke recovery research

    Molecular innovations underlying resistance to nicotine and neonicotinoids in the aphid Myzus persicae

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordThe green peach aphid, Myzus persicae, is a globally distributed highly damaging crop pest. This species has demonstrated an exceptional ability to evolve resistance to both synthetic insecticides used for control, and natural insecticides produced by certain plants as a chemical defence against insect attack. Here we review work characterising the evolution of resistance in M. persicae to the natural insecticide nicotine and the structurally related class of synthetic neonicotinoid insecticides. We outline how research on this topic has provided insights into long-standing questions of both evolutionary and applied importance. These include questions pertaining to the origins of novel traits, the number and nature of mutational events or "adaptive steps" underlying the evolution of new phenotypes, and whether host plant adaptations can be co-opted to confer resistance to synthetic insecticides. Finally, research on the molecular mechanisms underlying insecticide resistance in M. persicae has generated several outstanding questions on the genetic architecture of resistance to both natural and synthetic xenobiotics, and we conclude by identifying key knowledge gaps for future research. This article is protected by copyright. All rights reserved

    Timing and Dose of Upper Limb Motor Intervention After Stroke: A Systematic Review

    Get PDF
    This systematic review aimed to investigate timing, dose, and efficacy of upper limb intervention during the first 6 months poststroke. Three online databases were searched up to July 2020. Titles/abstracts/full-text were reviewed independently by 2 authors. Randomized and nonrandomized studies that enrolled people within the first 6 months poststroke, aimed to improve upper limb recovery, and completed preintervention and postintervention assessments were included. Risk of bias was assessed using Cochrane reporting tools. Studies were examined by timing (recovery epoch), dose, and intervention type. Two hundred and sixty-one studies were included, representing 228 (n=9704 participants) unique data sets. The number of studies completed increased from one (n=37 participants) between 1980 and 1984 to 91 (n=4417 participants) between 2015 and 2019. Timing of intervention start has not changed (median 38 days, interquartile range [IQR], 22–66) and study sample size remains small (median n=30, IQR 20–48). Most studies were rated high risk of bias (62%). Study participants were enrolled at different recovery epochs: 1 hyperacute (<24 hours), 13 acute (1–7 days), 176 early subacute (8–90 days), 34 late subacute (91–180 days), and 4 were unable to be classified to an epoch. For both the intervention and control groups, the median dose was 45 (IQR, 600–1430) min/session, 1 (IQR, 1–1) session/d, 5 (IQR, 5–5) d/wk for 4 (IQR, 3–5) weeks. The most common interventions tested were electromechanical (n=55 studies), electrical stimulation (n=38 studies), and constraint-induced movement (n=28 studies) therapies. Despite a large and growing body of research, intervention dose and sample size of included studies were often too small to detect clinically important effects. Furthermore, interventions remain focused on subacute stroke recovery with little change in recent decades. A united research agenda that establishes a clear biological understanding of timing, dose, and intervention type is needed to progress stroke recovery research. Prospective Register of Systematic Reviews ID: CRD42018019367/CRD42018111629

    How Immunocontraception Can Contribute to Elephant Management in Small, Enclosed Reserves: Munyawana Population as a Case Study

    Get PDF
    Immunocontraception has been widely used as a management tool to reduce population growth in captive as well as wild populations of various fauna. We model the use of an individual-based rotational immunocontraception plan on a wild elephant, Loxodonta africana, population and quantify the social and reproductive advantages of this method of implementation using adaptive management. The use of immunocontraception on an individual, rotational basis stretches the inter-calving interval for each individual female elephant to a management-determined interval, preventing exposing females to unlimited long-term immunocontraception use (which may have as yet undocumented negative effects). Such rotational immunocontraception can effectively lower population growth rates, age the population, and alter the age structure. Furthermore, such structured intervention can simulate natural process such as predation or episodic catastrophic events (e.g., drought), which regulates calf recruitment within an abnormally structured population. A rotational immunocontraception plan is a feasible and useful elephant population management tool, especially in a small, enclosed conservation area. Such approaches should be considered for other long-lived, social species in enclosed areas where the long-term consequences of consistent contraception may be unknown

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom

    Prognostic factors for patients with hepatic metastases from breast cancer

    Get PDF
    Median survival from liver metastases secondary to breast cancer is only a few months, with very rare 5-year survival. This study reviewed 145 patients with liver metastases from breast cancer to determine factors that may influence survival. Data were analysed using Kaplan–Meier survival curves, univariate and multivariate analysis. Median survival was 4.23 months (range 0.16–51), with a 27.6% 1-year survival. Factors that significantly predicted a poor prognosis on univariate analysis included symptomatic liver disease, deranged liver function tests, the presence of ascites, histological grade 3 disease at primary presentation, advanced age, oestrogen receptor (ER) negative tumours, carcinoembryonic antigen of over 1000 ng ml−1 and multiple vs single liver metastases. Response to treatment was also a significant predictor of survival with patients responding to chemo- or endocrine therapy surviving for a median of 13 and 13.9 months, respectively. Multivariate analysis of pretreatment variables identified a low albumin, advanced age and ER negativity as independent predictors of poor survival. The time interval between primary and metastatic disease, metastases at extrahepatic sites, histological subtype and nodal stage at primary presentation did not predict prognosis. Awareness of the prognostic implications of the above factors may assist in selecting the most appropriate treatment for these patients

    Genetic and shared couple environmental contributions to smoking and alcohol use in the UK population

    Get PDF
    Alcohol use and smoking are leading causes of death and disability worldwide. Both genetic and environmental factors have been shown to influence individual differences in the use of these substances. In the present study we tested whether genetic factors, modelled alongside common family environment, explained phenotypic variance in alcohol use and smoking behaviour in the Generation Scotland (GS) family sample of up to 19,377 individuals. SNP and pedigree-associated effects combined explained between 18 and 41% of the variance in substance use. Shared couple effects explained a significant amount of variance across all substance use traits, particularly alcohol intake, for which 38% of the phenotypic variance was explained. We tested whether the within-couple substance use associations were due to assortative mating by testing the association between partner polygenic risk scores in 34,987 couple pairs from the UK Biobank (UKB). No significant association between partner polygenic risk scores were observed. Associations between an individual's alcohol PRS (b = 0.05, S.E. = 0.006, p &lt; 2 × 10 ) and smoking status PRS (b = 0.05, S.E. = 0.005, p &lt; 2 × 10 ) were found with their partner's phenotype. In support of this, G carriers of a functional ADH1B polymorphism (rs1229984), known to be associated with greater alcohol intake, were found to consume less alcohol if they had a partner who carried an A allele at this SNP. Together these results show that the shared couple environment contributes significantly to patterns of substance use. It is unclear whether this is due to shared environmental factors, assortative mating, or indirect genetic effects. Future studies would benefit from longitudinal data and larger sample sizes to assess this further

    Measurement of the Dipion Mass Spectrum in X(3872) -> J/Psi Pi+ Pi- Decays

    Get PDF
    We measure the dipion mass spectrum in X(3872)--> J/Psi Pi+ Pi- decays using 360 pb-1 of pbar-p collisions at 1.96 TeV collected with the CDF II detector. The spectrum is fit with predictions for odd C-parity (3S1, 1P1, and 3DJ) charmonia decaying to J/Psi Pi+ Pi-, as well as even C-parity states in which the pions are from Rho0 decay. The latter case also encompasses exotic interpretations, such as a D0-D*0Bar molecule. Only the 3S1 and J/Psi Rho hypotheses are compatible with our data. Since 3S1 is untenable on other grounds, decay via J/Psi Rho is favored, which implies C=+1 for the X(3872). Models for different J/Psi-Rho angular momenta L are considered. Flexibility in the models, especially the introduction of Rho-Omega interference, enable good descriptions of our data for both L=0 and 1.Comment: 7 pages, 4 figures -- Submitted to Phys. Rev. Let
    corecore