688 research outputs found
Anisotropic Assembly of Colloidal Nanoparticles: Exploiting Substrate Crystallinity
We show that the crystal structure of a substrate can be exploited to drive the anisotropic assembly of colloidal nanoparticles. Pentanethiol-passivated Au particles of approximately 2 nm diameter deposited from toluene onto hydrogen-passivated Si(111) surfaces form linear assemblies (rods) with a narrow width distribution. The rod orientations mirror the substrate symmetry, with a high degree of alignment along principal crystallographic axes of the Si(111) surface. There is a strong preference for
anisotropic growth with rod widths substantially more tightly distributed than lengths. Entropic trapping of nanoparticles provides a plausible explanation for the formation of the anisotropic assemblies we observe
Chasing a Tiger in a network society? Hull Cityâs proposed name change in the pursuit of China and East Asiaâs new middle class consumers
The English Premier League possesses multiple global dimensions, including its clubsâ economic ownership, player recruitment patterns and television broadcasts of its matches. The owner of Hull City Association Football Clubâs economic rights, Dr Assam Allam, announced plans to re-name the club âHull City Tigersâ in an attempt to re-orientate the club towards seemingly lucrative East Asian, and specifically Chinese, markets in 2013. This article, first, draws upon Manuel Castellsâ work in The Rise of the Network Society to critically discuss the logic of Hull Cityâs proposed reorientation to suit ânew middle classâ consumers in China and the East Asian global region and second, uses the example to theoretically engage with Castellsâ idea that ânetworksâ replace âhierarchiesâ as social structures. This leads to the argument that while these plans might intend to strengthen the clubâs financial position, they overlook a concern with local environments that Castells guides us toward. By looking toward the local consumer practices in China and the East Asian global region, Allam would find: (a) the normalisation in production and consumption of counterfeit club-branded sportswear and television broadcasts which makes increasing the clubâs revenues difficult; and (b) that the regionâs ânew middle classesâ (marked by disposable income) are unlikely to foster support for Hull City, even if âTigersâ is added to its name
Recommended from our members
Are health-promoting prisons an impossibility? Lessons from England and Wales
Investigates 1999/2000 health promotion activities in prisons in England and Wales and documents the range and quality of health promotion occurring in prisons, against which future activity might be measured. Finds that health promotion is under-resourced and the concept and practice poorly understood. Health needs assessment tended to be analysis of and for health-care services and, except in a minority of cases, did not include consultation with staff, prisoners or their families. Where responsibility was shared and the work based on multi-disciplinary approaches, it seems more likely to have been reported accurately as health promotion activity. The official policy of a healthy settings/whole prison approach was not understood by many and its application was limited. The findings have informed the development of a new health promotion strategy for the prison service in England and Wales
Megasequence architecture of Taranaki, Wanganui, and King Country basins and Neogene progradation of two continental margin wedges across western New Zealand.
Taranaki, Wanganui and King Country basins (formerly North Wanganui Basin) have been regarded as discrete basins, but they contain a very similar Neogene sedimentary succession and much of their geological history is held in common. Analysis of the stratigraphic architecture of the fill of each basin reveals the occurrence of four 2nd order megasequences of tectonic origin. The oldest is the early-early Miocene (Otaian Stage) Mahoenui Group/megasequence, followed by the late-early Miocene (Altonian Stage) Mokau Group/megasequence (King Country Basin), both of which correspond to the lower part of the Manganui Formation in Taranaki Basin. The third is the middle to late Miocene Whangamomona Group/megasequence, and the fourth is the latest Miocene-Pleistocene Rangitikei Supergroup/megasequence, both represented in the three basins. Higher order sequences (4th, 5th, 6th), having a eustatic origin, are evident in the Whangamomona and Rangitikei megasequences, particularly those of 5th order with 41 ka periodicity. The distribution of the megasequences are shown in a series of cross-section panels built-up from well -to-well correlations, complemented by time-stratigraphic cross-sections.
The base of each megasequence is marked by marine flooding and represents a discrete phase in basin development. For the first megasequence this corresponded to rapid subsidence of the King Country Basin in a compressional setting and basement overthrusting on the Taranaki Fault, with the rapid introduction of terrigenous sediment during transgression. The Mahoenui megasequence accumulated mostly at bathyal depths; no regressive deposits are evident, having been eroded during subsequent uplift. The second (Mokau) megasequence accumulated during reverse movement on the Ohura Fault, formation of the Tarata Thrust Zone, and onlap of the basement block between the Taranaki Fault and the Patea-Tongaporutu-Herangi High (PTH). The Whangamomona megasequence accumulated during extensive reflooding of King Country Basin, onlap of the PTH High and of basement in the Wanganui Basin. This is an assymetrical sequence with a thin transgressive part (Otunui Formation) and a thick regressive part (Mount Messenger to Matemateaonga Formations). It represents the northward progradation of a continental margin wedge with bottom-set, slope-set and top-set components through Wanganui and King Country basins, with minor progradation over the PTH High and into Taranaki Basin. The Rangitikei megasequence is marked by extensive flooding at its base (Tangahoe Mudstone) and reflects the pull-down of the main Wanganui Basin depocentre. This megasequence comprises a second progradational margin wedge, which migrated on two fronts, one northward through Wanganui Basin and into King Country Basin, and a second west of the PTH High, through the Toru Trough and into the Central and Northern Grabens of Taranaki Basin and on to the Western Platform as the Giant Foresets Formation, thereby building up the modern shelf and slope.
Fifth and 6th order sequences are well expressed in the shelf deposits (top-sets) of the upper parts of the Whangamomona and Rangitikei megasequences. They typically have a distinctive sequence architecture comprising shellbed (TST), siltstone (HST) and sandstone (RST) beds. Manutahi-1, which was continuously cored, provides calibration of this sequence architecture to wireline log character, thereby enabling shelf deposits to be mapped widely in the subsurface via the wireline data for hydrocarbon exploration holes. Similar characterization of slope-sets and bottom-sets is work ongoing. The higher order (eustatic) sequences profoundly influenced the local reservoir architecture and seal properties of formations, whereas the megasequence progradation has been responsible for the regional hydrocarbon maturation and migration. Major late tilting, uplift and erosion affected all three basins and created a regional high along the eastern Margin of Taranaki Basin, thereby influencing the migration paths of hydrocarbons sourced deeper in the basin and allowing late charge of structural and possibly stratigraphic traps
Megasequence architecture of Taranaki, Wanganui, and King Country basins and Neogene progradation of two continental margin wedges across western New Zealand.
Taranaki, Wanganui and King Country basins (formerly North Wanganui Basin) have been regarded as discrete basins, but they contain a very similar Neogene sedimentary succession and much of their geological history is held in common. Analysis of the stratigraphic architecture of the fill of each basin reveals the occurrence of four 2nd order megasequences of tectonic origin. The oldest is the early-early Miocene (Otaian Stage) Mahoenui Group/megasequence, followed by the late-early Miocene (Altonian Stage) Mokau Group/megasequence (King Country Basin), both of which correspond to the lower part of the Manganui Formation in Taranaki Basin. The third is the middle to late Miocene Whangamomona Group/megasequence, and the fourth is the latest Miocene-Pleistocene Rangitikei Supergroup/megasequence, both represented in the three basins. Higher order sequences (4th, 5th, 6th), having a eustatic origin, are evident in the Whangamomona and Rangitikei megasequences, particularly those of 5th order with 41 ka periodicity. The distribution of the megasequences are shown in a series of cross-section panels built-up from well -to-well correlations, complemented by time-stratigraphic cross-sections.
The base of each megasequence is marked by marine flooding and represents a discrete phase in basin development. For the first megasequence this corresponded to rapid subsidence of the King Country Basin in a compressional setting and basement overthrusting on the Taranaki Fault, with the rapid introduction of terrigenous sediment during transgression. The Mahoenui megasequence accumulated mostly at bathyal depths; no regressive deposits are evident, having been eroded during subsequent uplift. The second (Mokau) megasequence accumulated during reverse movement on the Ohura Fault, formation of the Tarata Thrust Zone, and onlap of the basement block between the Taranaki Fault and the Patea-Tongaporutu-Herangi High (PTH). The Whangamomona megasequence accumulated during extensive reflooding of King Country Basin, onlap of the PTH High and of basement in the Wanganui Basin. This is an assymetrical sequence with a thin transgressive part (Otunui Formation) and a thick regressive part (Mount Messenger to Matemateaonga Formations). It represents the northward progradation of a continental margin wedge with bottom-set, slope-set and top-set components through Wanganui and King Country basins, with minor progradation over the PTH High and into Taranaki Basin. The Rangitikei megasequence is marked by extensive flooding at its base (Tangahoe Mudstone) and reflects the pull-down of the main Wanganui Basin depocentre. This megasequence comprises a second progradational margin wedge, which migrated on two fronts, one northward through Wanganui Basin and into King Country Basin, and a second west of the PTH High, through the Toru Trough and into the Central and Northern Grabens of Taranaki Basin and on to the Western Platform as the Giant Foresets Formation, thereby building up the modern shelf and slope.
Fifth and 6th order sequences are well expressed in the shelf deposits (top-sets) of the upper parts of the Whangamomona and Rangitikei megasequences. They typically have a distinctive sequence architecture comprising shellbed (TST), siltstone (HST) and sandstone (RST) beds. Manutahi-1, which was continuously cored, provides calibration of this sequence architecture to wireline log character, thereby enabling shelf deposits to be mapped widely in the subsurface via the wireline data for hydrocarbon exploration holes. Similar characterization of slope-sets and bottom-sets is work ongoing. The higher order (eustatic) sequences profoundly influenced the local reservoir architecture and seal properties of formations, whereas the megasequence progradation has been responsible for the regional hydrocarbon maturation and migration. Major late tilting, uplift and erosion affected all three basins and created a regional high along the eastern Margin of Taranaki Basin, thereby influencing the migration paths of hydrocarbons sourced deeper in the basin and allowing late charge of structural and possibly stratigraphic traps
Neogene stratigraphic architecture and tectonic evolution of Wanganui, King Country, and eastern Taranaki Basins, New Zealand
Analysis of the stratigraphic architecture of the fills of Wanganui, King Country, and eastern Taranaki Basins reveals the occurrence of five 2nd order Late Paleocene and Neogene sequences of tectonic origin. The oldest is the late Eocene-Oligocene Te Kuiti Sequence, followed by the early-early Miocene (Otaian) Mahoenui Sequence, followed by the late-early Miocene (Altonian) Mokau Sequence, all three in King Country Basin. The fourth is the middle Miocene to early Pliocene Whangamomona Sequence, and the fifth is the middle Pliocene-Pleistocene Rangitikei Sequence, both represented in the three basins. Higher order sequences (4th, 5th, 6th) with a eustatic origin occur particularly within the Whangamomona and Rangitikei Sequences, particularly those of 6th order with 41 000 yr periodicity
Mid-infrared InAs/InAsSb superlattice nBn photodetector monolithically integrated onto silicon
Mid-infrared (MIR) silicon photonics holds the potential for realizing next generation ultracompact spectroscopic systems for applications in gas sensing, defense, and medical diagnostics. The direct epitaxial growth of antimonide-based compound semiconductors on silicon provides a promising approach for extending the wavelength of silicon photonics to the longer infrared range. This paper reports on the fabrication of a high performance MIR photodetector directly grown onto silicon by molecular beam epitaxy. The device exhibited an extended cutoff wavelength at âŒ5.5 ÎŒm and a dark current density of 1.4 Ă 10â2 A/cm2 under 100 mV reverse bias at 200 K. A responsivity of 0.88 A/W and a specific detectivity in the order of 1.5 Ă 1010 Jones was measured at 200 K under 100 mV reverse bias operation. These results were achieved through the development of an innovative structure which incorporates a type-II InAs/InAsSb superlattice-based barrier nBn photodetector grown on a GaSb-on-silicon buffer layer. The difficulties in growing GaSb directly on silicon were overcome using a novel growth procedure consisting of an efficient AlSb interfacial misfit array, a two-step growth temperature procedure and dislocation filters resulting in a low defect density, antiphase domain free GaSb epitaxial layer on silicon. This work demonstrates that complex superlattice-based MIR photodetectors can be directly integrated onto a Si platform, which provides a pathway toward the realization of new, high performance, large area focal plane arrays and mid-infrared integrated photonic circuits
Disgust sensitivity is not associated with health in a rural Bangladeshi sample.
Disgust can be considered a psychological arm of the immune system that acts to prevent exposure to infectious agents. High disgust sensitivity is associated with greater behavioral avoidance of disease vectors and thus may reduce infection risk. A cross-sectional survey in rural Bangladesh provided no strong support for this hypothesis. In many species, the expression of pathogen- and predator-avoidance mechanisms is contingent on early life exposure to predators and pathogens. Using childhood health data collected in the 1990s, we examined if adults with more infectious diseases in childhood showed greater adult disgust sensitivity: no support for this association was found. Explanations for these null finding and possible directions for future research are discussed
α-Synuclein Aggregation Inhibitory Prunolides and a Dibrominated ÎČ-Carboline Sulfamate from the Ascidian Synoicum prunum
Seven new polyaromatic bis-spiroketal-containing butenolides, the prunolides DâI (4â9) and cis-prunolide C (10), a new dibrominated ÎČ-carboline sulfamate named pityriacitrin C (11), alongside the known prunolides AâC (1â3) were isolated from the Australian colonial ascidian Synoicum prunum. The prunolides DâG (4â7) represent the first asymmetrically brominated prunolides, while cis-prunolide C (10) is the first reported with a cis-configuration about the prunolideâs bis-spiroketal core. The prunolides displayed binding activities with the Parkinsonâs disease-implicated amyloid protein α-synuclein in a mass spectrometry binding assay, while the prunolides (1â5 and 10) were found to significantly inhibit the aggregation (>89.0%) of α-synuclein in a ThT amyloid dye assay. The prunolides AâC (1â3) were also tested for inhibition of pSyn aggregate formation in a primary embryonic mouse midbrain dopamine neuron model with prunolide B (2) displaying statistically significant inhibitory activity at 0.5 ÎŒM. The antiplasmodial and antibacterial activities of the isolates were also examined with prunolide C (3) displaying only weak activity against the 3D7 parasite strain of Plasmodium falciparum. Our findings reported herein suggest that the prunolides could provide a novel scaffold for the exploration of future therapeutics aimed at inhibiting amyloid protein aggregation and the treatment of numerous neurodegenerative diseases.Peer reviewe
- âŠ