21 research outputs found

    Amperometric DNA biosensor for the determination of auto-antibodies using DNA interaction with Pt(II) complex

    No full text
    A method of denatured DNA immobilisation on cellulose nitrate film has been developed. A modified film of uniform and stable surface has been used as a bio-sensitive part of amperometric DNA biosensor based on the stationary mercury-film covered silver electrode. The biosensor has been used to devise a new variant of solid-phase immunoassay of auto-antibodies (Ab) in blood serum without separation of components. The content of auto-Ab was monitored by measuring the currents of catalytic hydrogen evolution (with potentials of -1.2 and -1.4V) resulting from the complexing of Pt(II) with DNA or auto-Ab respectively. The determination has been performed within a wide concentration area of 5.0×10-10 to 7.0×10-8M. The limit of detection is 3.0×10-10M. The affinity constants for the immunoreaction of DNA-antibodies have been found to be 1.25×10 9 and 2.50×108M-1, which confirms the specificity of the interaction. The protocol of the immunoassay has been proposed and the procedure of diagnosing Aleutian mink disease (AMD) has been described here. © 2003 Elsevier B.V. All rights reserved

    Oxidative stress parameters and inflammatory and immune mediators as markers of the severity of sepsis

    No full text
    Introduction: Sepsis is a complex inflammatory syndrome with diverse etiology and wide spectrum of severity. The aim of this study was to investigate whether inflammatory mediators, in comparison with oxidative parameters, are associated with severity of sepsis. Methodology: Plasma neopterin, adenosine deaminase (ADA), vascular cell adhesion molecule (VCAM), intracellular adhesion molecule (ICAM), interleukin (IL)-1, IL-6, and tumor necrosis factor alpha (TNF-alpha), as inflammatory mediators, and serum nitric oxide (NOx), nitrotyrosine (NT), oxidized LDL (oxLDL) levels, serum paraoxonase 1 (PON1) activity, and erythrocyte glutathione (GSH) levels as oxidative stress parameters of 12 patients with mild sepsis, 25 patients with severe sepsis, and 20 healthy control subjects were evaluated. NOx, GSH levels and PON1 activity were determined by colorimetric methods, whereas neopterin, VCAM, ICAM, IL-1, IL-6, TNF-alpha, NT, and oxLDL levels were measured by enzyme-linked immunosorbent assay (ELISA)

    Oxidative stress parameters and inflammatory and immune mediators as markers of the severity of sepsis

    No full text
    Introduction: Sepsis is a complex inflammatory syndrome with diverse etiology and wide spectrum of severity. The aim of this study was to investigate whether inflammatory mediators, in comparison with oxidative parameters, are associated with severity of sepsis. Methodology: Plasma neopterin, adenosine deaminase (ADA), vascular cell adhesion molecule (VCAM), intracellular adhesion molecule (ICAM), interleukin (IL)-1, IL-6, and tumor necrosis factor alpha (TNF-alpha), as inflammatory mediators, and serum nitric oxide (NOx), nitrotyrosine (NT), oxidized LDL (oxLDL) levels, serum paraoxonase 1 (PON1) activity, and erythrocyte glutathione (GSH) levels as oxidative stress parameters of 12 patients with mild sepsis, 25 patients with severe sepsis, and 20 healthy control subjects were evaluated. NOx, GSH levels and PON1 activity were determined by colorimetric methods, whereas neopterin, VCAM, ICAM, IL-1, IL-6, TNF-alpha, NT, and oxLDL levels were measured by enzyme-linked immunosorbent assay (ELISA)

    Synthesis, characterization, evaluation of metabolic enzyme inhibitors and in silico studies of thymol based 2-amino thiol and sulfonic acid compounds

    No full text
    © 2022 Elsevier B.V.Eight new aminothiols (4a-g and 5) and three new sulfonic acid derivatives (6a-c) were synthesized, and their structures were characterized. Inhibitory effects of the obtained compounds on carbonic anhydrase I and II isoforms (hCA I and hCA II), butyrylcholinesterase (BChE) and acetylcholinesterase (AChE), enzymes were investigated. The newly synthesized compounds have inhibited hCA I with Kis ranging from 7.11 ± 1.46 nM (6a) to 670.52 ± 300.41 nM (4b) and, hCA II with Kis ranging from 16.83 ± 5.72 nM (6a) to 453.34 ± 208.56 nM (4c). Acetazolamide was employed as the positive control for both hCA isoforms (Ki for hCA I 198.81 ± 14.13 nM and Ki for hCA II 211.42 ± 13.10 nM), and among the new compounds obtained, it was observed that there were compounds that were active at much lower nM levels. All compounds were also evaluated for inhibition of AChE and BChE. They inhibited AChE and BChE enzymes in the range of Ki 5.24 ± 2.27 (6c) - 48.44 ± 21.82 (4g) for AChE and 4.86 ± 0.64 (6c) - 51.75 ± 12.56 (4a) for BChE, and the results were compared with the standard inhibitor Tacrine (Ki: 14.20 ± 8.83 nM toward AChE and Ki: 3.39 ± 1.91 nM for BChE). Cholinesterase (BChE and AChE) inhibitory abilities of all synthesized molecules were also performed in situ and molecular docking and molecular dynamics (MD) simulation studies. The molecular coupling scores of the compounds and the free binding energies calculated by MM/GBSA were found to be compatible. Examining the results obtained from this study shows that it may have the potential to develop new drugs to treat some global patients such as glaucoma and Alzheimer's disease (AD)

    Extending the shelf life of bananas with cinnamaldehyde-impregnated halloysite/polypropylene nanocomposite films

    No full text
    Ethylene, the ripening hormone produced by climacteric plants, is an important parameter that determines the shelf life of fresh fruits. Cinnamaldehyde (CA) encapsulated in halloysite nanotube (HNT) nanocarriers was studied as an ethylene production inhibition agent. The slow release of CA from HNT-CA nanohybrids was demonstrated to last for over 180 d and cause inhibition of ethylene production in bananas. The HNT-CA nanohybrids were incorporated into polypropylene (PP) via melt extrusion, resulting in PP/HNT-CA nanocomposite films with suitable mechanical properties for use as flexible packaging. Bananas stored in PP/HNT-CA nanocomposite film bags for 7 d presented significantly lower weight loss, higher firmness, and higher color scores, indicating freshness, than bananas stored in neat PP film bags. The nanocomposite films presented in this study were shown to slow down the ripening by inhibiting ethylene production, and they have strong potential as active food packaging materials that can prevent spoilage of ethylene-sensitive fresh fruits

    Novel eugenol bearing oxypropanolamines: Synthesis, characterization, antibacterial, antidiabetic, and anticholinergic potentials

    No full text
    Five oxypropanol amine derivatives that four of them are novel have been synthesized with high yields and practical methods. in vitro antibacterial susceptibility of Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus strains to synthesized substances were evaluated with agar well-diffusion method by comparison with commercially available drugs. Most of the bacteria were multidrug resistant. It was concluded that these compounds are much more effective than reference drugs. These eugenol bearing oxypropanolamine derivatives were also effective inhibitors against α-glycosidase, cytosolic carbonic anhydrase I and II isoforms (hCA I and II), and acetylcholinesterase (AChE) enzymes with Ki values in the range of 0.80 ± 0.24–3.52 ± 1.01 µM for hCA I, 1.08 ± 0.15–3.64 ± 0.92 µM for hCA II, 5.18 ± 0.84–12.46 ± 2.08 µM for α-glycosidase, and 11.33 ± 2.83–32.81 ± 9.73 µM for AChE, respectivel
    corecore