9,902 research outputs found

    On magnetic reconnection and flux rope topology in solar flux emergence

    Get PDF
    We present an analysis of the formation of atmospheric flux ropes in a magnetohydrodynamic solar flux emergence simulation. The simulation domain ranges from the top of the solar interior to the low corona. A twisted magnetic flux tube emerges from the solar interior and into the atmosphere where it interacts with the ambient magnetic field. By studying the connectivity of the evolving magnetic field, we are able to better understand the process of flux rope formation in the solar atmosphere. In the simulation, two flux ropes are produced as a result of flux emergence. Each has a different evolution resulting in different topological structures. These are determined by plasma flows and magnetic reconnection. As the flux rope is the basic structure of the coronal mass ejection, we discuss the implications of our findings for solar eruptions

    A new view of quiet-Sun topology from Hinode/SOT

    Get PDF
    Context. With the recent launch of the Hinode satellite our view of the nature and evolution of quiet-Sun regions has been improved. In light of the new high resolution observations, we revisit the study of the quiet Sun's topological nature. Aims. Topology is a tool to explain the complexity of the magnetic field, the occurrence of reconnection processes, and the heating of the corona. This Letter aims to give new insights to these different topics. Methods. Using a high-resolution Hinode/SOT observation of the line-of-sight magnetic field on the photosphere, we calculate the three dimensional magnetic field in the region above assuming a potential field. From the 3D field, we determine the existence of null points in the magnetic configuration. Results. From this model of a continuous field, we find that the distribution of null points with height is significantly different from that reported in previous studies. In particular, the null points are mainly located above the bottom boundary layer in the photosphere (54%) and in the chromosphere (44%) with only a few null points in the corona (2%). The density of null points (expressed as the ratio of the number of null points to the number of photospheric magnetic fragments) in the solar atmosphere is estimated to be between 3% and 8% depending on the method used to identify the number of magnetic fragments in the observed photosphere. Conclusions. This study reveals that the heating of the corona by magnetic reconnection at coronal null points is unlikely. Our findings do not rule out the heating of the corona at other topological features. We also report the topological complexity of the chromosphere as strongly suggested by recent observations from Hinode/SOT

    Some Aspects of the Biology of a Predaceous Anthomyiid Fly, \u3ci\u3eCoenosia Tigrina\u3c/i\u3e

    Get PDF
    The results of a two-year study in Michigan on the incidence of Coenosia tigrina adults under different onion production practices is presented. In Michigan, C. tigrina has three generations and is more abundant in organic agroecosystems than chemically-intensive onion production systems

    Performance of alkaline battery cells used in emergency locator transmitters

    Get PDF
    The characteristics of battery power supplies for emergency locator transmitters (ELT's) were investigated by testing alkaline zinc/manganese dioxide cells of the type typically used in ELT's. Cells from four manufacturers were tested. The cells were subjected to simulated environmental and load conditions representative of those required for survival and operation. Battery cell characteristics that may contribute to ELT malfunctions and limitations were evaluated. Experimental results from the battery cell study are discussed, and an evaluation of ELT performance while operating under a representative worst-case environmental condition is presented

    Anion receptor chemistry: highlights from 2011 and 2012

    No full text
    This review covers advances in anion complexation in the years 2011 and 2012. The review covers both organic and inorganic systems and also highlights the applications to which anion receptors can be applied such as self-assembly and molecular architecture, sensing, catalysis and anion transport

    The appearance, motion, and disappearance of three-dimensional magnetic null points

    Get PDF
    N.A.M. acknowledges support from NASA grants NNX11AB61G, NNX12AB25G, and NNX15AF43G; NASA contract NNM07AB07C; and NSF SHINE grants AGS-1156076 and AGS-1358342 to SAO. C.E.P. acknowledges support from the St Andrews 2013 STFC Consolidated grant.While theoretical models and simulations of magnetic reconnection often assume symmetry such that the magnetic null point when present is co-located with a flow stagnation point, the introduction of asymmetry typically leads to non-ideal flows across the null point. To understand this behavior, we present exact expressions for the motion of three-dimensional linear null points. The most general expression shows that linear null points move in the direction along which the magnetic field and its time derivative are antiparallel. Null point motion in resistive magnetohydrodynamics results from advection by the bulk plasma flow and resistive diffusion of the magnetic field, which allows non-ideal flows across topological boundaries. Null point motion is described intrinsically by parameters evaluated locally; however, global dynamics help set the local conditions at the null point. During a bifurcation of a degenerate null point into a null-null pair or the reverse, the instantaneous velocity of separation or convergence of the null-null pair will typically be infinite along the null space of the Jacobian matrix of the magnetic field, but with finite components in the directions orthogonal to the null space. Not all bifurcating null-null pairs are connected by a separator. Furthermore, except under special circumstances, there will not exist a straight line separator connecting a bifurcating null-null pair. The motion of separators cannot be described using solely local parameters because the identification of a particular field line as a separator may change as a result of non-ideal behavior elsewhere along the field line.Publisher PDFPeer reviewe

    Sizes of Voids as a test for Dark Matter Models

    Full text link
    We use the void probability statistics to study the redshift-space galaxy distribution as described by a volume-limited subsample of the Perseus-Pisces survey. We compare the results with the same analysis realized on artificial samples, extracted from high-resolution N-body simulations by reproducing the observational biases of the real data set. Simulations are run for the Cold+HotDM model (CHDM) and for unbiased and biased (b=1.5) CDM models in a 50 Mpc/h box. We identify galaxies as residing in peaks of the evolved density field. We fragment overmerged structures into individual galaxies so as to reproduce both the correct luminosity function (after assuming M/ L values for the resulting galaxy groups) and the two-point correlation function. Our main result is that a void-probability function (VPF) from the standard CHDM model with fractions 60% cold, 30% hot, 10% barions, exceeds the observational VPF with a high confidence level. CDM models produce smaller VPF independent of the biasing parameter. We verify the robustness of this result against changing the observer position in the simulations and the galaxy identification in the evolved density field.Comment: 15 pages, postscrip
    corecore