768 research outputs found

    Initial test results using the GEOS-3 engineering model altimeter

    Get PDF
    Data from a series of experimental tests run on the engineering model of the GEOS 3 radar altimeter using the Test and Measurement System (TAMS) designed for preflight testing of the radar altimeter are presented. These tests were conducted as a means of preparing and checking out a detailed test procedure to be used in running similar tests on the GEOS 3 protoflight model altimeter systems. The test procedures and results are also included

    Influence of music genre and composition on entertainment noise limits

    Get PDF
    Liquor licensing authorities across Australia typically require an entertainment noise test to be conducted before a venue can host amplified entertainment. The purpose of this test is to simulate live entertainment in order to determine the maximum permissible noise source limits allowed for the venue. In this paper, several disadvantages of the current method used for entertainment noise testing are identified and discussed. It was found that the choice of music can affect the resulting source noise level limits. An alternative approach has been suggested which involves playing band-limited pink noise across the 63 to 2kHz octave bands. A correction is then applied to determine the source noise level limits associated with different genres of music. The advantages of this method are that it reduces the time required to conduct the test, the nuisance caused to neighbouring premises is reduced and the variance in source noise level limits caused by different choice of test music is eliminated

    Energy spectra and photoluminescence of charged magneto-excitons

    Full text link
    Charged magneto-excitons X- in a dilute 2D electron gas in narrow and symmetric quantum wells are studied using exact diagonalization techniques. An excited triplet X- state with a binding energy of about 1 meV is found. This state and the singlet are the two optically active states observed in photoluminescence (PL). The interaction of X-'s with electrons is shown to have short range, which effectively isolates bound X- states from a dilute e-h plasma. This results in the insensitivity of PL to the filling factor nu. For the "dark" triplet X- ground state, the oscillator strength decreases exponentially as a function of 1/nu which explains why it is not seen in PL.Comment: 3 pages, 4 figures, submitted to Physica

    Stage, grade and morphology of tumours of the colon and rectum recorded in the Oxford Cancer Registry, 1995–2003

    Get PDF
    Data on stage, grade and morphology of 12 761 colorectal cancers registered between 1995 and 2003 by Oxford Cancer Registry are reviewed. Dukes stage is recorded for 81% of colon cancers and for 69% of rectal cancers. Incomplete registry data and changing recording practices may affect future evaluation of bowel cancer screening

    Constraints on the Recent Rate of Lunar Regolith Accumulation from Diviner Observations

    Get PDF
    Many large craters on the lunar nearside show radar CPR signatures consistent with the presence of blocky ejecta blankets, to distances pre dicted to be covered by continuous ejecta. However, most of these sur faces show limited enhancements in both derived rock abundance and rock-free regolith temperatures calculated from Diviner nighttime infrar ed observations. This indicates that the surface rocks are covered by a layer of thermally insulating regolith material. By matching the results of one-dimensional thermal models to Diviner nighttime temperat ures, we have constrained the thermophysical properties of the upper regolith, and the thickness of regolith overlying proximal ejecta. We find that for all of the regions surveyed (all in the nearside highla nds), the nighttime cooling curves are best fit by a density profile that varies exponentially with depth, consistent with a linear mixture of rocks and regolith fines, with increasing rock content with depth . Our results show significant spatial variations in the density e-folding depth, H, among young crater ejecta regions, indicating differen ces in the thickness of accumulated regolith. However, away from youn g craters, the average regional "equilibrium" value of H (Heq) is remarkably consistent, and is on the order of 5 cm. As expected, near-rim ejecta associated with young craters show lower values of H, indicating a high rock content in the shallow subsurface; for older craters, the average value of H approaches the regional value of Heq. Calculat ed H values for young craters show a clear correlation with published ages, providing the first observational constraint on the recent rate of lunar regolith accumulation. In addition, this result may help to resolve the apparent discrepancy between ages calculated from small crater counts on melt ponds versus counts on continuous ejecta (e.g., King crater; Ashley et al., 2011, LPSC 42, abstract 2437). This method could, in principle, be extended to other airless bodies (e.g., aste roids), which would in turn constrain the recent impactor flux

    GaSb quantum rings in GaAs/AlxGa1−xAs quantum wells

    Get PDF
    We report the results of continuous and time-resolved photoluminescence measurements on type-II GaSb quantum rings embedded within GaAs/AlxGa1-xAs quantum wells. A range of samples were grown with different well widths, compensation-doping concentrations within the wells, and number of quantum-ring layers. We find that each of these variants have no discernible effect on the radiative recombination, except for the very narrowest (5 nm) quantum well. In contrast, singleparticle numerical simulations of the sample predict changes in photoluminescence energy of up to 200 meV. This remarkable difference is explained by the strong Coulomb binding of electrons to rings that are multiply charged with holes. The resilience of the emission to compensation doping indicates that multiple hole occupancy of the quantum rings is required for efficient carrier recombination, regardless of whether these holes come from doping or excitation

    Electron-beam propagation in a two-dimensional electron gas

    Full text link
    A quantum mechanical model based on a Green's function approach has been used to calculate the transmission probability of electrons traversing a two-dimensional electron gas injected and detected via mode-selective quantum point contacts. Two-dimensional scattering potentials, back-scattering, and temperature effects were included in order to compare the calculated results with experimentally observed interference patterns. The results yield detailed information about the distribution, size, and the energetic height of the scattering potentials.Comment: 7 pages, 6 figure

    Probing the potential landscape inside a two-dimensional electron-gas

    Full text link
    We report direct observations of the scattering potentials in a two-dimensional electron-gas using electron-beam diffaction-experiments. The diffracting objects are local density-fluctuations caused by the spatial and charge-state distribution of the donors in the GaAs-(Al,Ga)As heterostructures. The scatterers can be manipulated externally by sample illumination, or by cooling the sample down under depleted conditions.Comment: 4 pages, 4 figure

    Room-temperature Operation of Low-voltage, Non-volatile, Compound-semiconductor Memory Cells

    Get PDF
    Whilst the different forms of conventional (charge-based) memories are well suited to their individual roles in computers and other electronic devices, flaws in their properties mean that intensive research into alternative, or emerging, memories continues. In particular, the goal of simultaneously achieving the contradictory requirements of non-volatility and fast, low-voltage (low-energy) switching has proved challenging. Here, we report an oxide-free, floating-gate memory cell based on III-V semiconductor heterostructures with a junctionless channel and non-destructive read of the stored data. Non-volatile data retention of at least 104 s in combination with switching at ≤2.6 V is achieved by use of the extraordinary 2.1 eV conduction band offsets of InAs/AlSb and a triple-barrier resonant tunnelling structure. The combination of low-voltage operation and small capacitance implies intrinsic switching energy per unit area that is 100 and 1000 times smaller than dynamic random access memory and Flash respectively. The device may thus be considered as a new emerging memory with considerable potential
    corecore