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Abstract Using derived temperatures from thermal‐infrared instruments aboard orbiting spacecraft, we
constrain the thermophysical properties, in the upper few meters, of the north polar residual cap of Mars. In
line with previous authors we test a homogeneous thermal model (i.e., depth‐independent thermal
properties), simulating water ice of varying porosity against observed temperatures. We find that high
thermal inertia (>1,000 J m−2 K−1 s 1/2 or <40% porosity) provides the best fit for most of the residual cap.
Additionally, we test the observed data against models with depth‐dependent thermal properties. Models
tested converge on similar solutions: we find extensive regions of low surface thermal inertia consistent with
a porous layer at the surface (>40% porosity) that densifies with depth into a zero‐porosity ice layer at
shallow depths (<0.5 m). We interpret this as evidence of recent water ice accumulation. Our results along
the edge of the residual cap imply that denser (<40% porosity) ice is present at the surface and coincides with
lower albedo. These results suggest that older ice is undergoing exhumation along much of the residual cap
margin. The results support recent water ice accumulation having occurred over specific regions, while
ablation dominates in others.

Plain Language Summary The polar regions of Mars host kilometer‐thick stacks of water ice
that have been built up over millions of years. At the north pole today, the top of this ice deposit is
interacting with theMartian atmosphere. Whether or not ice at the surface is fluffy (like snow) or dense (like
an ice slab) can provide useful information about the polar ice cap and recent climate. Multiple years of
surface temperature measurements have been acquired by instruments aboard spacecraft in orbit around
Mars. By comparing these values with temperature simulations, we can narrow down the type of ice near the
surface. Our results show that the type of ice varies across the polar cap. Some regions appear to be a snow‐
like surface where the polar capmay be growing. Other regions, most notably along the edge of the polar cap,
show denser ice that is likely older. The nature of the ice tells us about the current climate and how these
kilometer‐thick ice deposits form.

1. Introduction

The north and south polar regions of Mars host polar layered deposits (NPLD and SPLD, respectively) that
are sequences of water ice with varying degrees of dust (sufficient to produce visible layering in exposures)
and are up to 2‐ to 3‐km thick. Together, they account for the majority of known water ice on Mars (Byrne,
2009; Phillips et al., 2008; Plaut et al., 2007). The spatial extent of the layered deposits is substantial, with the
NPLD extending equatorward from the pole at all longitudes to roughly 80°N and the SPLD extending equa-
torward at some longitudes to 72°S.

The PLDs are thought to have formed over the recent geologic past (106–108 years; Byrne, 2009; Greve et al.,
2010; Herkenhoff & Plaut, 2000; Hvidberg et al., 2012; Levrard et al., 2007; Phillips et al., 2008; Smith et al.,
2016), where climate change is driven by changes in orbital elements (Laskar et al., 2004). Due to the abun-
dance of troughs that expose sequences of the layered deposits, the NPLD have been the primary focus for
determining a climatological record. Previous studies have explored linking stratigraphic sequences to
changes in Martian orbital elements (Becerra et al., 2016; Hvidberg et al., 2012; Laskar et al., 2002;
Milkovich & Head, 2005; Sori et al., 2014). However, inferring past climate from layer properties (e.g., reflec-
tance and protrusion) remains uncertain.
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Key Points:
• We identify residual water ice with

elevated surface porosity (>40%)
that is densified at depths <0.5 m,
consistent with recent accumulation

• Denser, vertically homogeneous ice
is detected at the residual cap edge,
consistent with ablation and
exhumation of older, densified ice
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One significant difference between the two poles is the composition of ice at the surface. High‐albedo resi-
dual ice caps remain at both poles after retreat of the much larger seasonal CO2 caps. The southern residual
ice cap is dominated by a few‐meter‐thick layer of CO2 ice (Kieffer, 1979; Thomas et al., 2000). The northern
residual ice cap (NRC) is composed of water ice, is on the order of a meter thick (Herkenhoff et al., 2007),
Study of the NRC can inform us of the potential link between climate and polar geology. The NRC directly
participates in the current climate by supplying the majority of atmospheric water vapor, globally, in north-
ern summer (Smith, 2008). Past residual caps (now layers within the NPLD) were also likely to have inter-
acted and therefore been influenced by past climates. Finding similarities between the features of ice within
the PLD and ice comprising the NRC could identify a past climate similar to today's. We are interested in the
physical properties (density, potential layering, etc.) of the NRC and their geographic variability so that we
can better understand how ice properties reflect the conditions of formation. Understanding the current cli-
mate and NRC can potentially unlock a larger climate record. Additionally, knowing the physical properties
are important for designing a future landed mission.

Several studies have analyzed NRC albedo and composition (e.g., Kieffer, 1990; Langevin et al., 2005), yet
comparably few have addressed its thermophysical state (Paige et al., 1994; Putzig et al., 2005), and none
has addressed how these properties change with depth. The present‐day mass balance of the NRC is
unknown (Byrne, 2009). Langevin et al. (2005), using near‐infrared spectral measurements, concluded that
the surface of the NRC is coarse‐grained ice, implying net ablation and the exposure of older ice. The same
study also found the surface to be mostly dust free, which is unexpected for a sublimating layer, where for-
mation of a surface lag seems likely. Brown et al. (2016), also using near‐infrared spectral measurements,
observed transitions between accumulation and ablation as a function of season but did not favor a particu-
lar net mass balance. Smith et al. (2016), using sounding radar, reported a packet of ice‐rich layers (on the
order of hundreds of meters thick), consistent with a recent period of accumulation, although this evidence
cannot be used to invoke accumulation today. Impact craters on the NRC imply craters with tens of meters of
relief are removed in tens of thousands of years, although crater interiors may be preferential sites of ice
deposition (Banks et al., 2010; Landis et al., 2016).

Knowledge of how density varies with depth constrains environmental conditions (e.g., ice accumulation
rates) that are vital to understanding how the climate affects polar stratigraphy. In terrestrial ice sheets and
glaciers, the density of ice increases with depth; that is, ice deposited at the surface, typically as highly porous
snow (>50% porosity), undergoes densification and will evolve toward low‐porosity glacial ice. The primary
physical mechanisms involved in near‐surface terrestrial densification are gravity‐driven compaction and
temperature‐gradient driven vapor transport (Arthern & Wingham, 1998; Herron & Langway, 1980).

Adapting terrestrial models of ice densification to Mars, Arthern et al. (2000) found that this process should
occur more slowly under the drier, lower‐gravity Martian conditions. Unlike Earth, densification on Mars is
dominated by vapor transport through the pore space in the ice. The predicted depth‐density profiles of
Martian ice are especially sensitive to the accumulation rate. If accumulation rates are low, zero‐porosity
ice will be present at the surface. When accumulation rates are sufficiently high, low densities can be main-
tained at the surface (e.g., 360 kg/m3 or ~60% porosity).

The focus of this study is the physical nature of the NRC or what we consider the most recent and potentially
active layer of the NPLD. Constraining the thermophysical properties of today's NRC can inform us how
NPLD layers form and the vertical structure of the NRC can provide insight into the recent climate. Here
we investigate how relevant properties of NRC water ice (e.g., density and albedo) vary, both laterally across
the NRC and vertically into the subsurface.

Observed temperatures of Mars have been used previously to constrain thermophysical parameters of the
near surface (Kieffer et al., 1977; Paige et al., 1994; Putzig et al., 2005). It is common to use thermal inertia
(TI; expressed in units J m−2 K−1 s−1/2) to describe thermophysical properties.

TI ¼
ffiffiffiffiffiffiffiffi
kρc

p
(1)

Here k is the thermal conductivity (Wm−1 K−1), ρ is the bulk density (kg/m3), and c is the specific heat capa-
city (J kg−1 K−1). Surface temperatures are affected by a region of the subsurface approximated by the ther-
mal skin depth, δ, in meters.
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δ ¼ TI
ρc

ffiffiffiffi
P
π

r
(2)

Here P is the period of a sinusoidal surface temperature variation (e.g., approximately diurnal or seasonal) in
seconds. This relationship between TI and skin depth assumes a homogeneous subsurface (i.e., constant
thermal properties with depth). For the properties of zero‐porosity ice, and the period of one Martian year,
the thermal skin depth is 6.4 m. If we assume a situation with an ice porosity of 50% (assuming properties
described in section 3.2.2), we find a skin depth of 4.4 m. The depth of sensitivity varies with a number of
factors (e.g., latitude or magnitude of seasonality, subsurface layering, and seasonal CO2 frost properties)
and therefore cannot be defined by a single depth.

Investigators have previously explored the thermal nature of the NRC with thermal‐infrared data sets (Paige
et al., 1994; Putzig et al., 2014; Putzig & Mellon, 2007). Paige et al. (1994) used Viking Infrared Thermal
Mapper (IRTM) observations to derive albedo and thermal inertia simultaneously (similar to this study).
They characterized the NRC as a high‐albedo (>0.40), high‐TI unit (>750 J m−2 K−1 s−1/2), in contrast to
the surrounding, lower‐TI regolith. Paige et al. (1994) also show that the presence of thin (approximately
millimeters) coatings of dust are consistent with IRTM observations. Putzig and Mellon (2007) prescribe
albedo in their fitting approach, retrieve a TI value for each temperature measurement, and average the
results. However, near‐surface layering (Bandfield & Feldman, 2008; Putzig et al., 2014) results in a season-
ally dependent “apparent” TI that is difficult to compare to that derived from temperature measurements
acquired over a significant portion of the Martian year (e.g., from Paige et al., 1994, and this work).
Regardless, their averaged TI is consistent with the NRC as a high‐TI unit. In section 4.1, the results of
our work will be compared to these earlier studies, where applicable.

Earlier studies have used thermal models with depth‐dependent properties for Mars (Bandfield, 2007;
Bandfield & Feldman, 2008; Mellon et al., 2004; Putzig et al., 2014; Putzig & Mellon, 2007) and the Moon
(Hayne et al., 2017; Vasavada et al., 2012), to explore surfaces where changes with depth are expected. We
explore three relationships of depth versus density (i.e., abrupt, linear, and exponential changes in ice den-
sity) in order to compare the near‐surface structure of the NRC with predicted profiles (e.g., Arthern
et al., 2000).

2. Methods
2.1. Observational Data

Data used in this study were acquired by the Thermal Emission Spectrometer (TES) aboard Mars Global
Surveyor (MGS). MGS was operational over four Mars years (MY), specifically MY24–MY28 (see Piqueux
et al., 2015, for a description of the Martian calendar). The primary science orbit of MGS was inclined
approximately 93°, which resulted in high data density near the Martian poles (Figure 1), useful for a study
of polar surface properties. Unfortunately, it also results in a region of low‐to‐zero data density poleward of
87°N. This near‐polar region was only observed sporadically via cross‐track spacecraft rolls and off‐nadir
pointing of TES. Because data are sparse here, we ignore this region.

TES consists of a thermal‐infrared spectrometer as well as coaligned visible and thermal‐infrared bol-
ometers. A single TES footprint is approximately 3 × 3 km but is lengthened by a factor of 2–3 in the
along‐track direction due to smearing (Christensen et al., 2001; Putzig et al., 2005; Titus et al., 2001). We
assume brightness temperatures derived from the thermal infrared bolometer represent kinetic surface tem-
peratures, similar to previous studies that used TES data to interpret thermophysical properties (Putzig et al.,
2005; Putzig & Mellon, 2007). We include observations poleward of 70°N, for all Mars years, and restrict
emission angles to ≤20°. Additionally, data with “bad” nadir optical depth ratings are omitted
(Christensen et al., 2001). However, optical depth retrievals are sparse over the NRC due to relatively low
daytime peak surface temperatures (i.e., <220 K), which are insufficient for spectrometer retrievals (Smith
et al., 2001). Because erroneous data are still possible over the cap we ignore brightness temperatures
<160 and >350 K. A temperature of 160 K is roughly 10 K higher than the expected kinetic temperature
of CO2 ice on Mars and is chosen due to the likely heterogeneous defrosting of CO2‐covered terrain within
a TES pixel (Bapst et al., 2015; Piqueux et al., 2015). Thus, this step removes TES observations over surfaces,
even those partially bearing seasonal CO2 frost, from our study.
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The latitudes of TES observations are converted to distance from the pole
via the MATLAB Mapping Toolbox “distance” function, which uses a
Martian reference ellipsoid and returns the arc length between two points
on the ellipsoid surface (here the observation and the pole). The data are
then divided into 10 × 10 km bins. Data and results are presented in an
azimuthal equidistant projection centered at the north pole. Data above
70°N are display where 0°E longitude is at the bottom of each figure,
increasing counterclockwise (see Figure 1 for geographic coordinate
labels). Bins with fewer than 100 observations are omitted from the
results presented.

Model Description and Fitting Procedures

A 1‐D thermal diffusion model is employed to generate surface
temperatures in order to link the measured surface temperatures to
near‐surface thermophysical properties. The model boundaries are con-
trolled by insolation/emission at the surface, with conduction of heat
into the subsurface, and geothermal heat (30 mW/m2; Davies &
Arvidson, 1981) at the base. Model simulations are carried out for a
range of input parameters (Table 1) where the parameter space was
iterated on and selected based on the range of derived results. For sim-
plicity, we assume a constant elevation of −3,000 m to calculate CO2

condensation temperatures, from rescaling the Viking Lander pressure
measurements (Tillman et al., 1993) using an atmospheric scale height
of 10.8 km. Atmospherically scattered visible light is parameterized as

an additional 2% of the solar flux, while downwelling infrared is an additional 4% of the noontime flux
(Aharonson & Schorghofer, 2006; Kieffer et al., 1977; Schorghofer & Edgett, 2006). Cases without atmo-
spheric radiation were tested and had negligible impact on the derived results, with the greatest differ-
ence observed in albedo. We refer the reader to Bapst et al. (2018) for additional description of the
thermal model.

In all cases the thermophysical properties of surface materials are those of water ice of varying density.
Layers of regolith at the surface are not investigated or expected over the NRC due to its high albedo
(Figure 2) and previous thermophysical analysis (Paige et al., 1994). At zero porosity (solid ice) we assume
thermal properties of k = 3.2 W m−1 K−1, ρ = 920 kg/m3, and c = 1,600 J kg−1 K−1. For porous ice, density
scales linearly with porosity, c remains constant, and k follows an empirical relationship based on the
measured thermal conductivity‐density relationship of terrestrial snowpack (described below; Calonne
et al., 2011). Hemispheric or bond albedo is derived as part of the model solution and emissivity is pre-
scribed as 1.0 except when CO2 ice is present, where the emissivity lowers to 0.85 and albedo is fixed
at 0.65. These properties were validated by comparing model output to GRS derived CO2 thicknesses
(Kelly et al., 2006).

How thermal conductivity changes with ice porosity is of major relevance to this work. We adopt an
expression of thermal conductivity as a function of ice density (equation (3)) from a study on terrestrial

Figure 1. Number of observations per 10 × 10 km bin in azimuthal equidi-
stant projection centered at the north pole with longitude and latitude
labeled. Note the logarithmic scale and the increase in density toward the
pole.

Table 1
Lookup‐Table Elements

Parameter Range

Latitude 70°–90° in 0.5° increments
Albedo 0.05–0.5 in 0.025 increments
Surface porosity 0–0.95 in 0.05 increments

(equivalent to thermal inertia range of ~50–2,200 J m−2 K−1 s−1/2)
Abrupt transition to zero‐porosity ice Depths of 0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4,0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2, 2.5, 3, 3.5, 4, and 5 m
Exponentially decreasing porosity e‐folding depths of 0.05, 0.1, 0.2, 0.3, 0.4,0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.25, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 m
Linearly decreasing porosity Porosity gradient of 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, and 2 m−1
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snowpack (Calonne et al., 2011). We modify this expression to match
the conductivity of pure water ice at Martian temperatures (i.e.,
k = 3.2 W m−1 K−1 or TI = 2,200 J m−2 K−1 s−1/2 for zero porosity)
by applying a constant scaling factor of ~1.6 (not included in
equation (3)).

k ¼ 2:5×10−6ρ2−1:23×10−4ρþ 0:024 (3)

Different models of thermal conductivity versus density (Figure 3) as well
as the temperature‐dependent effects on thermal properties are explored
in section 4.3 but do not largely affect the results or conclusions presented
using the model of Calonne et al. (2011). There remains considerable
uncertainty in the microstructure of water ice and its effect on thermal
conductivity under Martian conditions (Siegler et al., 2012), which differ
from theoretical predictions (e.g., Mellon et al., 1997). Previous studies
have also focused largely on pore‐filling ice within regolith, and not
snowpack evolution, hence the adoption of empirical models from
terrestrial studies.

The simplest subsurface model investigated here is the vertically homo-
geneous case (i.e., constant thermal properties with depth) that has

been used in previous derivations of thermal properties of the north polar region (Paige et al., 1994;
Putzig et al., 2005). Porosity and albedo are free parameters in this case.

Three separate depth‐density relationships are explored beyond the homogeneous case, introducing a third
free parameter (Figure 4). The parameter ranges explored in each case are shown in Table 1. The three cases
are as follows:

1. Linearly increasing density with depth until solid ice is reached. This best resembles profiles of depth and
density present in Arthern et al. (2000).

2. Exponentially increasing density with depth that approaches solid ice (Hayne et al., 2017).
3. An abrupt increase in density to that of solid ice at a discrete depth (akin to a solid ice table, e.g., Mellon

et al., 2009; Schorghofer, 2010).

For our fitting metric, we calculate the root‐mean‐square (RMS) temperature difference between
TES‐derived and model surface temperatures. The minimum RMS value calculated across our modeled
parameter space (Table 1) qualifies as our best fit. All valid data points within a bin are included in calculat-
ing RMS temperature, as opposed to the “one‐point” method where albedo is prescribed (e.g., Putzig et al.,
2005; Putzig & Mellon, 2007). As a single temperature measurement in time is nonunique (e.g., due to the
time of day, layering, or uncertainty in surface albedo), multiple temperatures must be used to constrain
vertically heterogeneous thermal properties and surface albedo. Each binned temperature time series
(~102–103 data points; see Figure 1) is tested against ~6,800 independent models for cases with depth‐
dependent properties.

The work presented here omits data acquired within specific seasons. We find it is especially important to
omit spring data (LS = 0°–90°) as during this time the seasonal layer of CO2 ice is sublimating at the
surface (Piqueux, Kleinböhl, et al., 2015). We adopt a seasonal window after CO2 ice has defrosted.
TES albedo time series suggest seasonal defrosting occurs until LS ~ 110°, which we use as the start of
our window. Pilorget et al. (2013) document the thermal effect of lithic material that is jettisoned from
beneath sublimating slabs of CO2 at the south pole during spring, leading to appreciable thicknesses of
nonicy material (millimeters) deposited on the surface. This can result in temperatures above that of
CO2 condensation. This process is may be present in the north as evidenced in TES temperature data
(Figure 5). Our 1‐D thermal model can only represent the surface as either CO2 covered or not, whereas
in reality the defrosting process may be heterogeneous at scales below TES's spatial resolution (as is true
for regolith at the Phoenix Lander site; Searls et al., 2010). Thus, during spring, TES measurements may
contain a mix of temperatures from CO2‐covered, CO2‐free, and dust‐covered CO2 surfaces, resulting in
erroneous fits between our model and the observations (Figure 5). This further complicates

Figure 2. Mean Thermal Emission Spectrometer (TES) Lambert albedo
poleward of 70°N in 10 × 10 km bins, including only data between
LS = 100°–150°.
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determining a precise date for fitting that is void of seasonal frost. We explored fitting with other seasonal
windows starting at different times, that is, LS = 0°–180°. Differences in derived best fits using a seasonal
window starting between LS = 100°–150° were small, with our preferred choice of LS = 110° as this is
around the earliest date of complete defrosting at the highest latitudes explored. The choice of end
season also made little difference as long as the window extends over the onset of seasonal CO2 ice
since we omit temperatures <160 K (LS ~ 180°).

Quantifying the uncertainty in derived best fit properties is problematic due to unknowns that could
affect temperatures measured by TES (e.g., emission and absorption by atmospheric aerosols). These
effects dominate other contributions such as instrument noise, which introduces relatively small amounts
of uncertainty on derived temperature (Christensen et al., 2001). The bottom row of Figure 5 shows
calculated RMS temperature differences and outlines the general range surrounding best fit properties.
In the homogeneous case, derived surface albedo is more constrained than porosity. For relatively high
TI (i.e., low porosity) materials studied in this work, the range of high‐quality fits for porosity is relatively
large due to the limited spread in temperatures of high TI materials. For example, in Figure 5 an RMS
temperature of ~4 K could be met for ice of zero porosity or ice of 40% porosity. For the homogeneous
solutions the reader should ignore small changes in TI across regions that exhibit large values of derived
TI (e.g., >1,500 J m−2 K−1 s−1/2).

When considering depth‐dependent models (Figure 5, bottom right), acceptable solutions can be met for a
number of surface porosity and depth‐dependent TI combinations (e.g., 70% surface porosity and 0.05‐m

depth to zero‐porosity ice or 40% surface porosity and 0.2‐m depth to
zero‐porosity ice, etc.). The reader should not focus on one combination
(e.g., the reported best fit) but instead consider the improvement in
RMS fit (section 3.3) as to whether there is evidence of near‐surface layer-
ing and understand there is a range of acceptable layering combinations
in surface porosity and depth‐dependent space.

3. Results

Model fits of albedo and near‐surface thermal properties are presented in
this section. Because our model is designed to retrieve the thermal proper-
ties of water ice with varying porosity, our results over regolith‐covered
surfaces are not valid for depth‐dependent cases. For this reason, bins that
share derived surface TI < 1,100 J m−2 K−1 s−1/2 in the homogeneous case
are masked in the plots of depth‐dependent cases.

3.1. Homogeneous Case

Derived TI in the homogeneous case is typically high (>1,000 J m−2 K−1 s
−1/2) across the NRC and its icy outliers (i.e., lower‐latitude residual ice
that is discontinuous from the NRC; Figure 6). Model‐derived albedo of

Figure 4. Example of depth‐density relationships explored in this work.
Each model displayed has a surface porosity of 50% (equivalent
TI = 760 Jm−2 K−1 s−1/2) and densifies toward zero porosity, that is, slab ice
where TI = 2,200 J m−2 K−1 s−1/2. TI = thermal inertia.

Figure 3. Relationships explored in this work between (left) ice conductivity and (right) thermal inertia, as a function of density/porosity of ice.
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the NRC is consistent with the pattern of observed albedo across the NRC (Figure 2). Limiting our analysis to
NRC material with derived albedo ≥0.35 (approximately three thousand 100‐km2 bins), yields a mean NRC
TI of 1,871 Jm−2 K−1 s−1/2 and standard deviation of 270 Jm−2 K−1 s−1/2. Heightened derived TI (>1,600 Jm
−2 K−1 s−1/2) is present in general poleward of 85°N, on the edge of the NRC near Olympia Planum and
Gemina Scopuli, and among the outliers. On the lower end of the derived TI range is a substantial
fraction of Gemina Lingula and Gemina Scopuli (~150–250 km from the southern edge of the mapped
NRC) and shows derived TI <1,500 J m−2 K−1 s−1/2. The northern plains surrounding the NRC show
derived TI values <600 J m−2 K−1 s−1/2 consistent with a homogeneous fit of ground ice overlain by a
thin layer of ice‐free regolith (Mellon et al., 2009). This vertical inhomogeneity is reflected in relatively
large best fit RMS temperatures.

3.2. Depth‐Dependent Cases

The three depth‐density relationships explored (i.e., abrupt, exponential, and linear changes in thermal
properties with depth; Figure 4) all yield similar best fits for derived values of albedo and surface TI
(Figure 7). The derived bond albedo is lower across the NRC and is higher over the outlier units than what
was derived in the homogeneous case (<0.05 absolute difference in either case; Figure 6).

Figure 5. The top row shows TES temperatures for a single 10 × 10 km bin located in Gemina Lingula at 81.4°N, 9.6°E and
is colorized by local time, with our fitting window depicted by the blue shaded region. In addition to TES data, our 0400
and 1300 hr best fit models are shown for two cases where grey shading indicates the diurnal range: (top left) homoge-
neous or no depth dependence and (top right) abrupt change to zero‐porosity ice. Best fit RMS temperatures are 3.3 and
1.2 K, respectively. The derived best fit properties for the homogeneous case were a porosity of 20% and albedo of 0.375. For
the abrupt case the derived properties are a surface porosity of 70%, albedo of 0.35, and a depth to zero‐porosity ice of
0.05 m. The bottom row shows derived RMS temperatures against our fitting parameters where (bottom left) is our
homogeneous case and (bottom right) is the abrupt case but is shown for only our best fit albedo. TES = thermal emission
spectrometer; RMS = root‐mean‐square.
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There are apparent changes in patterns of surface TI between depth‐dependent cases and the homogeneous
case. We find that values of surface TI are lower (<1,000 J m−2 K−1 s−1/2) for almost the entirety of the NRC
and its outliers. A delineation in surface TI is apparent between much of the NRC edge and interior ice. The
broad regions of low derived surface TI coincide with shallow depth‐dependent values, suggesting increases
in density <0.5 m in the subsurface (Figure 7). Regions of relatively high surface TI, found at the edge of the
NRC and around Chasma Boreale, vary in latitudinal extent from tens of kilometers to hundreds of kilo-
meters. These regions are characterized by their relatively low albedo (<0.3; Figure 2, 6, and 7) and higher
surface TI (>1,100 J m−2 K−1 s−1/2). The icy outliers span a range of surface TI from 400 to 1,200 J m−2 K
−1 s−1/2 and aremore similar to the low surface TI regions of the NRC interior than its edges in TI and albedo.

Additionally, we explore the best fit depth‐dependent relationship for each case (Figure 7, right column). For
the abrupt scenario, we display the best fit depth to zero‐porosity ice. For linear and exponential cases, we
plot the e‐folding depth of the porosity. We find abrupt and e‐folding depths correspond to the pattern
observed in surface TI. The regions of the NRC where we derive lower surface TI exhibit transitions to solid
ice that are shallow, between 0.05 and 0.5 m, while regions with higher surface TI (e.g., NRC edge and west
of Chasma Boreale) exhibit greater depths to zero‐porosity ice. The shallowest depth‐dependent values are
observed over Gemina Lingula and the icy outliers. Ultimately, we cannot favor one depth‐dependent rela-
tionship over another but instead identify regions whose temperatures are consistent with models that
include subsurface layering.

3.3. Best Fit Comparison

We compare the best fit RMS temperature of the three depth‐dependent cases explored (i.e., abrupt, exponen-
tial, and linear) to the homogeneous case (Figure 8). Regolith‐dominated surfaces are poorly fit by our ther-
mal models, as expected, and so are masked similar to Figure 7. All models with depth‐dependent properties
show a near‐identical improvement over the homogeneous case, and therefore, one cannot be favored over
another. The largest improvements in best fit RMS are seen primarily across Gemina Lingula and the icy out-
liers. The fit did not substantially improve over the southern edge of Gemina Lingula, a region west of
Chasma Boreale, and ice present in western Olympia. Lastly, the highest latitudes investigated showed little
difference in fit quality, which could be attributed to the lack of diurnal temperature variations, which are
essential in constraining layered cases (as opposed to seasonal temperature variations that constrain bulk TI).

3.4. Properties of Residual Ice

To further explore the vertical structure of the ice of the NRC, we chose three regions of interest in an attempt
to cover the range of surface TI derived over the cap (Figures 7 and 8). We selected a 10 × 10 bin area
(~104 km2) in Gemina Lingula (centered at 81.7°N, 5.2°E and relatively low surface TI), a region west of
Chasma Boreale (centered at 82.9°N, 305.4°E with intermediate‐to‐high surface TI), and a sample of residual

Figure 6. Derived albedo, thermal inertia (TI), and root‐mean‐square (RMS) temperature for the north polar region of Mars above 70°N for the homogeneous case
(i.e., no depth dependency).
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ice adjacent to the east of the polar erg, Olympia Planum (centered at 83.3°N, 127.9°E). Bins sampled are sub-
ject to the same mask as used in Figure 7; that is, bins that have TI <1,100 J m−2 K−1 s−1/2 from the homo-
geneous fit are not included. Derived surface porosity and depth‐dependent properties are shown for each
case and depict the general trends in our regions of interest (Figure 9). We primarily report results in terms
of porosity which can be converted to thermal conductivity or thermal inertia after section 2.2. (see Figure 3).

Figure 7. Best fit albedo, surface thermal inertia, and depth‐dependence for the three cases explored. Plotted properties have regolith‐dominated regions masked
out (black). The linear case of depth dependence is expressed as an e‐folding depth for ease in comparing results to the exponential case.
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Models with depth‐dependent density converge on similar solutions of surface TI and subsurface changes in
density (Figures 7 and 9). As stated in section 3.2, for regions of the NRC with low surface TI, we derive rela-
tively shallow depths to zero‐porosity ice. Best fits for abrupt transitions to zero‐porosity ice are primarily

Figure 8. Improvement in best fit root‐mean‐square temperature for the three cases of depth dependence over the homogeneous case. Green and yellow colors
indicate regions where the fit was improved by including depth‐dependent properties. Dark blue (approximately zero) indicates no improvement over homoge-
neous models.

Figure 9. Histograms of derived surface porosity and depth‐dependence for a region of Gemina Lingula, the region west of Chasma Boreale, and Olympia. Also
displayed are the mean root‐mean‐square (RMS) temperature differences for each region and case. Regions of low surface thermal inertia (e.g., Gemina
Lingula) correspond to shallower depth to zero‐porosity ice, for depth‐dependent cases. Note that the horizontal axis of depth‐dependent properties for the abrupt
case does not match the others due to different lookup table elements (Table 1).

10.1029/2018JE005786Journal of Geophysical Research: Planets

BAPST ET AL. 1324



<0.3 m over Gemina Lingula. Other low‐surface‐TI regions, which includes much of the NRC and the icy
outliers, have similar depths to zero‐porosity ice (Figure 7).

Ice Conductivity Models and Temperature Dependence

The relationship between the density of water ice in the NRC and its conductivity is uncertain for a number
of reasons, many relating to the microstructure of the ice (e.g., pore radius, grain size, and degree of round-
ness; see Sturm et al., 1997). Because we lack in situmeasurements of these properties on Mars, we explore,
in addition to the model by Calonne et al. (2011), two additional models for ice conductivity: Sturm et al.
(1997) and Schwerdtfeger, 1963; see Figure 3). The models tested do not result in appreciable differences
in derived properties (Figure 10). Thus, our results and interpretations are not particularly sensitive to alter-
native models of thermal conductivity for porous water ice.

The temperature‐dependent effects on ice thermal properties are well known and used in terrestrial glaciol-
ogy (Cuffey & Paterson, 2010; Yen, 1981). Here we consider the effect of temperature on thermal conductiv-
ity, k, and heat capacity, c, after Cuffey and Paterson (2010).

c ¼ 152:5þ 7:122T (4)

k ¼ 9:828 exp −5:7×10−3T
� �

(5)

Uncertainty in ice microstructure will have a major impact as these properties are valid for only zero‐
porosity water ice. The addition of porosity and interstitial gases of varying composition, density, and tem-
perature (e.g., the Martian atmosphere) into the pore space can significantly change the effective conductiv-
ity (Mellon et al., 1997; Sturm et al., 1997). Here we determine how the temperature‐dependence of the solid
conductivity and heat capacity affect our results. The conductivity is again modified to be consistent with
values used previously. Additionally, because the temperature‐dependent model is computationally slower,
only a single bin is tested and is the same location within Gemina Lingula as referenced in Figure 5.

Figure 10. Histograms of derived surface porosity and depth to zero‐porosity ice (abrupt change with depth) for the three models of ice conductivity explored (see
Figure 3). The sampled region is the same area of Gemina Lingula described in section 3.4 and Figure 9. Also displayed is the mean root‐mean‐square (RMS)
temperature difference for eachmodel tested. In the depth to zero‐porosity ice histogram all three models share the same twomost common values at 0.1 and 0.2 m.

Table 2
Effect of Temperature‐Dependent Properties on Derived Parameters

Derived property

Homogeneous case Abrupt case

Temperature
independent

Temperature
dependent

Temperature
independent

Temperature
dependent

Surface porosity 0.2 0.2 0.7 0.45
Albedo 0.375 0.35 0.35 0.325
Depth to zero‐porosity
ice (m)

N/A N/A 0.05 0.2

RMS temperature (K) 3.3 3.1 1.2 1.2

Note. RMS = root‐mean‐square; N/A = not applicable.
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In all cases the best fit RMS temperature is consistent when using
both temperature‐independent and temperature‐dependent properties
(Table 2). The derived properties are in close agreement for the homo-
geneous case with only a small change in derived albedo. In the case
of depth‐dependent models, the difference is more pronounced. We
argue, as is depicted in Figure 5, that the difference between best fits
is negligible for a range of surface porosity and depth‐dependent combi-
nations. Because there is little difference in our RMS temperature
between these cases, they are equally plausible but do support near‐
surface (<0.5 m) layering as they provide a substantially better fit over
the homogeneous model.

4. Discussion and Conclusions
4.1. Comparison to Previous Work

Our findings for the homogeneous case (section 3.1) are greater than TI
derivations made by previous authors using Viking IRTM data. Paige
and Ingersoll (1985) derived a TI poleward of 86°N of
1,250 ± 400 J m−2 K−1 s−1/2 using an energy balance approach and
Viking data. Using Viking IRTM‐derived surface temperatures Paige
et al. (1994) found an average TI of 1,151 J m−2 K−1 s−1/2 poleward
of 86°N. We lack TES observations poleward of 87°N, due to the orbital
inclination of MGS; however, we have ~103 TI derivations above 86°N,
which yield a mean value of 2,038 J m−2 K−1 s−1/2, and a standard
deviation of 136 J m−2 K−1 s−1/2. Under the assumption of a homoge-
neous subsurface, differences between derived TI and that of previous
authors are substantial. This could be due to a variety of factors. One
is the seasonal range where we fit data. Paige et al. (1994) investigated
data acquired between LS ~ 90°–120°. TES data are available at all sea-

sons, and we selected the range of LS ~ 110°–180°. We defend our exclusion of early northern summer
(LS = 90°–110°) as there is evidence from TES albedo that seasonal frost is still sublimating during this
period (potentially water frost at the latest dates). Our models also have different treatment for atmo-
spheric radiation, where we employ a simple scheme after Schorghofer and Edgett (2006). Paige et al.
use a no‐atmosphere scheme for their primary results but do investigate a number of atmospheric scenar-
ios using a more sophisticated radiative transfer model and find the effect on derived properties to be
significant (and often result in an increase in the apparent TI derived). IRTM data are acquired at higher
emission angles compared to TES due to the orbital inclination of the Viking orbiters (~40°; Snyder,
1977) and are thus more susceptible to atmospheric effects (TES data are predominantly ~0° emission
angle). The spiral troughs are partially resolved in our analysis (affecting only overlapping or neighboring
bins) but are mixed with flat‐lying residual ice in IRTM data, which could affect derived thermal proper-
ties. Lastly, the local time coverage of Viking IRTM is superior to that of TES, which primarily acquired
data at ~0200 and ~1400 hr. However, TES does capture near‐maximum and near‐minimum tempera-
tures of the diurnal curve (see Figure 5). We are fitting both diurnal and seasonal aspects of the data,
and so our results represent the best fit to both.

Putzig and Mellon (2007) used a one‐point method for TI derivation that is susceptible to error at polar lati-
tudes. Despite these differences, detailed below, the surface TI derived by Putzig and Mellon (2007) over the
NRC is consistent with our results, albeit with substantial scatter. One known effect the one‐point method
can introduce for a nonhomogeneous subsurface is a seasonally dependent TI (Bandfield, 2007; Bandfield
& Feldman, 2008; Putzig et al., 2014) and are thus averaged in the retrievals of Putzig and Mellon (2007).
Putzig et al. (2014) study the effect of layering on derived TI in polar dunes in Olympia Planum; however,
we are not aware of any thermal study applying this method to the NRC. Lastly, Putzig and Mellon (2007)
do not omit springtime data, and so potentially erroneous TI derivations are averaged into their polar results.

Figure 11. Samples from High Resolution Imaging Science Experiment
(HiRISE) images over our three regions of interest from section 3.4.
Gemina Lingula exhibited low surface thermal inertia (TI), regions west of
Chasma Boreale yield intermediate‐to‐high surface TI, and Olympia, which
yields the highest derived TI. HiRISE image IDs (from top to bottom) are
PSP_001650_2620, PSP_010171_2630, and PSP_009979_2630.
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4.2. Spatial Heterogeneity of the North Residual Cap

The results of our fitting show that the majority of the NRC is consistent with depth‐dependent or layered
models, although the style of layering cannot be deduced from analysis (Figures 7 and 8). The strongest evi-
dence for layering is found where the fits improved most, that is, over Gemina Lingula and the icy outliers.
This result is not entirely unexpected given the layered nature of the NPLD as exposed in polar troughs as
well as the vertically inhomogeneous nature of terrestrial ice deposits. The geographic diversity in the
near‐surface layering suggests that mechanisms that control the physical properties of residual ice (e.g.,
accumulation or ablation) are spatially diverse. Interpreting derived properties in these terms is important
for understanding mass balance across the NRC and its evolution.

We interpret the derived properties of low surface TI regions of the NRC as the consequence of recent ice
accumulation, where the material being deposited at the surface is relatively porous (>40%) and densifies
with depth (Figure 9). The relatively high albedo of these regions is also consistent with recent accumula-
tion. Along the edge of the NRC and the region west of Chasma Boreale, we derive denser ice (<40% surface
porosity) along with relatively low surface albedo (Figures 7 and 9).

Densified ice might be present near the surface for several reasons. One possible explanation is that the ice is
accumulating slowly, and therefore, low‐porosity ice cannot be maintained against densification near or at
the surface (Arthern et al., 2000). Although high‐TI regions mostly exhibit lower albedo (i.e., the opposite of
what one would assume for an accumulating surface), this could be explained by the presence of coarse‐
grained ice, consistent with ice metamorphism and thus densification. Alternatively, denser ice may be
the product of recent ablation. In this scenario, older ice is being exhumed and is retreating, with some
mechanism (e.g., eolian transport; Smith et al., 2013) acting to remove lithic material that would otherwise
form a lag at the surface. Even with the removal of a potential lag, the surface may include small mixing frac-
tions of dust, consistent with Langevin et al. (2005), and would result in the relatively low surface albedo
(Kieffer, 1990; Warren, 1982). We are unable to distinguish between these scenarios with thermal data alone.

The notion that ice at the surface can be simultaneously accumulating and retreating, as a function of loca-
tion on the NRC, can complicate the interpretation of NPLD layers. It may also help explain the higher den-
sity of NPLD troughs and unconformities (Tanaka, 2005) at lower latitudes. Troughs, which are tied to
sublimation and eolian processes (Smith & Holt, 2010; Smith et al., 2013), may be aided in initiation due
to increased dust content at surface (i.e., lithic material liberated via sublimation of retreating ice).

One particular region of the residual cap edge shows some of the highest derived TI, located at approxi-
mately 83°N, 125°E in the Olympia region. Unlike the previously mentioned high‐TI examples, this region
also appears to have an anomalously high TI in the homogeneous solution. All cases yield low surface por-
osities of ~15% or TI ~ 1,700 J m−2 K−1 s−1/2. This region also exhibits large derived e‐folding/abrupt depths,
converging on a mostly homogeneous subsurface. Derived albedo is relatively low, likely due to contamina-
tion by dust at the surface, but again could be due to coarse‐grained water ice. This high‐TI signal remains
intact in our derivations suggesting that any surface dust layer is of insufficient thickness to act as an effec-
tive thermal insulator. We interpret this region of the NRC as composed of older ice than other examples
around the NRC edge and favor recent exhumation by simultaneous retreat and removal of lithic material
via wind.

The NRC has been imaged at high spatial resolutions and can be compared to our derived surface properties.
We use data from the High Resolution Imaging Science Experiment (HiRISE) with up to 25‐cm/pixel spatial
resolution (McEwen et al., 2007). We focus on the regions of interest outlined in section 3.4, as they span a
range of derived surface TI (Figure 11). The surface morphology can vary within a HiRISE image, and our
regions of interest span 103–104 km2, so Figure 11 is only a sample of these regions.

The sample from Gemina Lingula shows a softened surface texture in the more reflective regions. This sof-
tened terrain lies between arrays of dark‐toned pits that are regularly spaced by 10–30 m. The higher albedo
material may represent porous ice that has accumulated recently, resulting in the low surface TI derived in
this region. The region west of Chasma Boreale has considerable diversity as seen by HiRISE, as it is nearby
Crotone impact crater and intersects with the sand‐rich basal unit (Tanaka et al., 2008). The example from
Olympia also exposes basal unit material and is where we derived some of the highest TI in this study, how-
ever there is sparse coverage by HiRISE. The terrain is mostly featureless, punctuated by knobby, blocky
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structures ~10 m in size that appear to be actively eroding as evidenced by light‐toned streaks of material
downwind their location. This is consistent with our interpretation of old, and less reflective ice (due to dust)
being the product of exhumation and resulting in relatively low derived albedo and high derived TI.

5. Conclusions

In the work presented, we investigated the thermophysical nature of the upper most layer of the NPLD, the
NRC, with emphasis on depth‐density relationships within the subsurface (depths of decimeters to meters).
We find depth dependencies associated within specific regions of the NRC and the icy outliers (i.e., a more
porous layer of ice overlying a denser layer). This trend is consistent with the accumulation of ice that then
densifies with age and depth as it is buried, as occurs on Earth. The vast majority of these changes in density
occur within 0.5 m of the surface.

Results in the region surrounding Chasma Boreale, as well as the edges of the NRC in general, support a
more homogeneous subsurface that is denser, and likely older, ice. We interpret ice along the margin of
the NRC as having undergone recent ablation or is ablating at present day, which is consistent with its
observed low albedo. Our results point to nonuniform accumulation across the residual cap. This is consis-
tent with previous investigations of the uppermost layers of the NPLD, which show evidence for lateral
variations in accumulation rates at the present (Tyler & Barnes, 2014) as well as in the past (Becerra
et al., 2016).
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