107 research outputs found

    Experiments based on blue intensity for reconstructing North Pacific temperatures along the Gulf of Alaska

    Get PDF
    We gratefully acknowledge the National Science Foundation’s Paleoclimatic Perspectives on Climatic Change (P2C2) grant nos. AGS 1159430, AGS 1502186, AGS 1502150, and PLR 15-04134.Ring-width (RW) records from the Gulf of Alaska (GOA) have yielded a valuable long-term perspective for North Pacific changes on decadal to longer timescales in prior studies but contain a broad winter to late summer seasonal climate response. Similar to the highly climate-sensitive maximum latewood density (MXD) proxy, the blue intensity (BI) parameter has recently been shown to correlate well with year-to-year warm-season temperatures for a number of sites at northern latitudes. Since BI records are much less labour intensive and expensive to generate than MXD, such data hold great potential value for future tree-ring studies in the GOA and other regions in mid- to high latitudes. Here we explore the potential for improving tree-ring-based reconstructions using combinations of RW- and BI-related parameters (latewood BI and delta BI) from an experimental subset of samples at eight mountain hemlock (Tsuga mertensiana) sites along the GOA. This is the first study for the hemlock genus using BI data. We find that using either inverted latewood BI (LWBinv) or delta BI (DB) can improve the amount of explained temperature variance by > 10 % compared to RW alone, although the optimal target season shrinks to June–September, which may have implications for studying ocean–atmosphere variability in the region. One challenge in building these BI records is that resin extraction did not remove colour differences between the heartwood and sapwood; thus, long term trend biases, expressed as relatively warm temperatures in the 18th century, were noted when using the LWBinv data. Using DB appeared to overcome these trend biases, resulting in a reconstruction expressing 18th–19th century temperatures ca. 0.5 °C cooler than the 20th–21st centuries. This cool period agrees well with previous dendroclimatic studies and the glacial advance record in the region. Continuing BI measurement in the GOA region must focus on sampling and measuring more trees per site (> 20) and compiling more sites to overcome site-specific factors affecting climate response and using subfossil material to extend the record. Although LWBinv captures the inter-annual climate signal more strongly than DB, DB appears to better capture long-term secular trends that agree with other proxy archives in the region. Great care is needed, however, when implementing different detrending options and more experimentation is necessary to assess the utility of DB for different conifer species around the Northern Hemisphere.Publisher PDFPeer reviewe

    400 Years of summer hydroclimate from stable isotopes in Iberian trees.

    Get PDF
    Tree rings are natural archives that annually record distinct types of past climate variability depending on the parameters measured. Here, we use ring-width and stable isotopes in cellulose of trees from the northwestern Iberian Peninsula (IP) to understand regional summer hydroclimate over the last 400 years and the associated atmospheric patterns. Correlations between tree rings and climate data demonstrate that isotope signatures in the targeted Iberian pine forests are very sensitive to water availability during the summer period, and are mainly controlled by stomatal conductance. Non-linear methods based on extreme events analysis allow for capturing distinct seasonal climatic variability recorded by tree-ring parameters and asymmetric signals of the associated atmospheric features. Moreover, years with extreme high (low) values in the tree-ring records were characterised by coherent large-scale atmospheric circulation patterns with reduced (enhanced) moisture transport onto the northwestern IP. These analyses of extremes revealed that high/low proxy values do not necessarily correspond to mirror images in the atmospheric anomaly patterns, suggesting different drivers of these patterns and the corresponding signature recorded in the proxies. Regional hydroclimate features across the broader IP and western Europe during extreme wet/dry summers detected by the northwestern IP trees compare favourably to independent multicentury sea level pressure and drought reconstructions for Europe. Historical records also validate our findings that attribute non-linear moisture signals recorded by extreme tree-ring values to distinct large-scale atmospheric patterns and allow for 400-year reconstructions of the frequency of occurrence of extreme conditions in late spring and summer hydroclimate

    Varying boreal forest response to Arctic environmental change at the Firth River, Alaska

    Get PDF
    The response of boreal forests to anthropogenic climate change remains uncertain, with potentially significant impacts for the global carbon cycle, albedo, canopy evapotranspiration and feedbacks into further climate change. Here, we focus on tree-ring data from the Firth River site at treeline in northeastern Alaska, in a tundra–forest transition region where pronounced warming has already occurred. Both tree-ring width (TRW) and maximum latewood density (MXD) chronologies were developed to identify the nature of tree growth and density responses to climatic and environmental changes in white spruce (Picea glauca), a dominant Arctic treeline species. Good agreement was found between the interannual fluctuations in the TRW chronology and summer temperatures from 1901 to 1950, whereas no significant relationships were found from 1951 to 2001, supporting evidence of significant divergence between TRW and summer temperature in the second half of the 20th century. In contrast to this unstable climatic response in the TRW record, the high frequency July–August temperature signal in the MXD series seems reasonably stable through the 20th century. Wider and denser rings were more frequent during the 20th century, particularly after 1950, than in previous centuries. Finally, comparison between the tree-ring proxies and a satellite-derived vegetation index suggests that TRW and MXD correlate with vegetation productivity at the landscape level at different times of the growing season

    Past and future drought in Mongolia

    Get PDF
    The severity of recent droughts in semiarid regions is increasingly attributed to anthropogenic climate change, but it is unclear whether these moisture anomalies exceed those of the past and how past variability compares to future projections. On the Mongolian Plateau, a recent decade-long drought that exceeded the variability in the instrumental record was associated with economic, social, and environmental change. We evaluate this drought using an annual reconstruction of the Palmer Drought Severity Index (PDSI) spanning the last 2060 years in concert with simulations of past and future drought through the year 2100 CE. We show that although the most recent drought and pluvial were highly unusual in the last 2000 years, exceeding the 900-year return interval in both cases, these events were not unprecedented in the 2060-year reconstruction, and events of similar duration and severity occur in paleoclimate, historical, and future climate simulations. The Community Earth System Model (CESM) ensemble suggests a drying trend until at least the middle of the 21st century, when this trend reverses as a consequence of elevated precipitation. Although the potential direct effects of elevated CO2 on plant water use efficiency exacerbate uncertainties about future hydroclimate trends, these results suggest that future drought projections for Mongolia are unlikely to exceed those of the last two millennia, despite projected warming

    Biogeographic, atmospheric, and climatic factors influencing tree growth in Mediterranean Aleppo pine forests

    Get PDF
    There is a lack of knowledge on how tree species respond to climatic constraintslike water shortages and related atmospheric patterns across broad spatial and temporal scales.These assessments are needed to project which populations will better tolerate or respond to globalwarming across the tree species distribution range. Warmer and drier conditions have been forecastedfor the Mediterranean Basin, where Aleppo pine (Pinus halepensisMill.) is the most widely distributedconifer in dry sites. This species shows plastic growth responses to climate, being particularly sensitiveto drought. We evaluated how 32 Aleppo pine forests responded to climate during the second half ofthe 20th century by using dendrochronology. Climatic constraints of radial growth were inferred byfitting the Vaganov-Shashkin (VS-Lite) growth model to ring-width data from our Aleppo pine forestnetwork. Our findings reported that Aleppo pine growth decreased and showed the highest commoncoherence among trees in dry, continental sites located in southeastern and eastern inland Spain andAlgeria. In contrast, growth increased in wetter sites located in northeastern Spain. Overall, across theAleppo pine network tree growth was enhanced by prior wet winters and cool and wet springs,whilst warm summers were associated with less growth. The relationships between site ring-widthchronologies were higher in nearby forests. This explains why Aleppo pine growth was distinctlylinked to indices of atmospheric circulation patterns depending on the geographical location of theforests. The western forests were more influenced by moisture and temperature conditions drivenby the Western Mediterranean Oscillation (WeMO) and the Northern Atlantic Oscillation (NAO),the southern forests by the East Atlantic (EA) and the august NAO, while the Balearic, Tunisian andnortheastern sites by the Arctic Oscillation (AO) and the Scandinavian pattern (SCA). The climaticconstraints for Aleppo pine tree growth and its biogeographical variability were well captured by theVS-Lite model. The model performed better in dry and continental sites, showing strong growthcoherence between trees and climatic limitations of growth. Further research using similar broad-scaleapproaches to climate-growth relationships in drought-prone regions deserves more attention

    Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe

    Get PDF
    Aim Climate change is expected to modify growth trends of forests around the world. However, this modification may vary in strength and intensity across a species' biogeographical range. Here, we study European populations of silver fir (Abies alba) across its southern distribution limits in Spain, Italy and Romania. We hypothesized that growth trends of silver fir will differ across its distribution range, with a marked decline in growth in drought-prone regions near the species' southernmost biogeographical limits. Location Europe (Spain, Italy, Romania). Methods We collected tree-ring data from at least 1300 silver fir trees located in 111 sites. The dataset was used to assess and model growth trends, quantified as changes in basal area increment, and to determine how growth responds to climate. Results We found contrasting patterns of basal area increments among countries and sites. Populations of silver fir located outside the Mediterranean area (e.g. northern Italy, Romania) have shown a clear increase in growth over the last two decades, whereas most populations in Spain and southern Italy have displayed a marked decline in growth since the 1980s. The growth of silver fir forests at the south-western distribution limit is severely constrained by low spring-summer water availability, whereas growth of silver fir forests in non-Mediterranean areas is limited by cold conditions in late winter to early spring. Main conclusions Climate warming is distinctly modifying growth patterns and responses to climate in silver fir across most of the species' European distribution area. In south-western Europe the reduction in growth of many populations is related to an observed increase in aridity, whereas in more temperate areas warming is enhancing growth. Our results confirm a decline in the growth of silver fir at its south-western distribution limits as a consequence of climate warming

    Aged but withstanding: Maintenance of growth rates in old pines is not related to enhanced water-use efficiency

    Get PDF
    Growth of old trees in cold-limited forests may benefit from recent climate warming and rising atmospheric CO2 concentrations (ca) if age-related constraints do not impair wood formation. To test this hypothesis, we studied old Mountain pine trees at three Pyrenean high-elevation forests subjected to cold-wet (ORD, AIG) or warmer-drier (PED) conditions. We analyzed long-term trends (1450–2008) in growth (BAI, basal area increment), maximum (MXD) and minimum (MID) wood density, and tree-ring carbon (δ13C) and oxygen (δ18O) isotope composition, which were used as proxies for intrinsic water-use efficiency (iWUE) and stomatal conductance (gs), respectively. Old pines showed positive (AIG and ORD) or stable (PED) growth trends during the industrial period (since 1850) despite being older than 400 years. Growth and wood density covaried from 1850 onwards. In the cold-wet sites (AIG and ORD) enhanced photosynthesis through rising ca was likely responsible for the post-1850 iWUE improvement. However, uncoupling between BAI and iWUE indicated that increases in iWUE were not responsible for the higher growth but climate warming. A reduction in gs was inferred from increased δ18O for PED trees from 1960 onwards, the warmest site where the highest iWUE increase occurred (34%). This suggests that an emergent drought stress at warm-dry sites could trigger stomatal closure to avoid excessive transpiration. Overall, carbon acquisition as lasting woody pools is expected to be maintained in aged trees from cold and high-elevation sites where old forests constitute unique long-term carbon reservoirs.We are very grateful to several projects financed by “Organismo Autónomo de Parques Nacionales” (projects 12/2008 387/2011). E.G. was funded by a Juan de la Cierva post-doctoral research contract (FJCI-2014-19615, MEC, Spain). Spanish (AMB95-0160, CGL2011-26654) and EU projects ISONET (contract EV K2-2001-00237) and MILLENNIUM (017008–2) also supported this study by contributing additional datasets
    corecore