2,132 research outputs found

    Non-critical open strings beyond the semi-classical approximation

    Get PDF
    We studied the lowest order quantum corrections to the macroscopic wave functions Γ(A,)\Gamma (A,\ell) of non-critical string theory using the semi-classical expansion of Liouville theory. By carefully taking the perimeter constraint into account we obtained a new type of boundary condition for the Liouville field which is compatible with the reparametrization invariance of the boundary and which is not only a mixture of Dirichlet and Neumann types but also involves an integral of an exponential of the Liouville field along the boundary. This condition contains an unknown function of A/2A/\ell^2. We determined this function by computing part of the one-loop corrections to Γ(A,)\Gamma (A,\ell).Comment: 23 pages, 1 figure, LaTeX file, epsf.st

    A peak-clustering method for MEG group analysis to minimise artefacts due to smoothness

    Get PDF
    Magnetoencephalography (MEG), a non-invasive technique for characterizing brain electrical activity, is gaining popularity as a tool for assessing group-level differences between experimental conditions. One method for assessing task-condition effects involves beamforming, where a weighted sum of field measurements is used to tune activity on a voxel-by-voxel basis. However, this method has been shown to produce inhomogeneous smoothness differences as a function of signal-to-noise across a volumetric image, which can then produce false positives at the group level. Here we describe a novel method for group-level analysis with MEG beamformer images that utilizes the peak locations within each participant's volumetric image to assess group-level effects. We compared our peak-clustering algorithm with SnPM using simulated data. We found that our method was immune to artefactual group effects that can arise as a result of inhomogeneous smoothness differences across a volumetric image. We also used our peak-clustering algorithm on experimental data and found that regions were identified that corresponded with task-related regions identified in the literature. These findings suggest that our technique is a robust method for group-level analysis with MEG beamformer images

    Deterministic cavity quantum electrodynamics with trapped ions

    Get PDF
    We have employed radio-frequency trapping to localize a single 40Ca+-ion in a high-finesse optical cavity. By means of laser Doppler cooling, the position spread of the ion's wavefunction along the cavity axis was reduced to 42 nm, a fraction of the resonance wavelength of ionized calcium (λ = 397 nm). By controlling the position of the ion in the optical field, continuous and completely deterministic coupling of ion and field was realized. The precise three-dimensional location of the ion in the cavity was measured by observing the fluorescent light emitted upon excitation in the cavity field. The single-ion system is ideally suited to implement cavity quantum electrodynamics under cw conditions. To this end we operate the cavity on the D3/2–P1/2 transition of 40Ca+ (λ = 866 nm). Applications include the controlled generation of single-photon pulses with high efficiency and two-ion quantum gates

    A calcium ion in a cavity as a controlled single-photon source

    Get PDF
    We present a single calcium ion, coupled to a high-finesse cavity, as an almost ideal system for the controlled generation of single photons. Photons from a pump beam are Raman-scattered by the ion into the cavity mode, which subsequently emits the photon into a well-defined output channel. In contrast with comparable atomic systems, the ion is localized at a fixed position in the cavity mode for indefinite times, enabling truly continuous operation of the device. We have performed numeric calculations to assess the performance of the system and present the first experimental indication of single-photon emission in our set-up

    The radiative lepton flavor violating decays in the split fermion scenario in the two Higgs doublet model

    Full text link
    We study the branching ratios of the lepton flavor violating processes \mu -> e \gamma, \tau -> e \gamma and \tau -> \mu\gamma in the split fermion scenario, in the framework of the two Higgs doublet model. We observe that the branching ratios are relatively more sensitive to the compactification scale and the Gaussian widths of the leptons in the extra dimensions, for two extra dimensions and especially for the \tau -> \mu \gamma decay.Comment: 19 pages, 7 Figure

    Investigation of the crystallization process of CSD-ErBCO on IBAD-substrate via DSD approach

    Get PDF
    REBa2_{2}Cu3_{3}O7δ_{7-δ} (REBCO, RE: rare earth, such as Y and Gd) compounds have been extensively studied as a superconducting layer in coated conductors. Although ErBCO potentially has better superconducting properties than YBCO and GdBCO, little research has been made on it, especially in chemical solution deposition (CSD). In this work, ErBCO films were deposited on IBAD (ion-beam-assisted-deposition) substrates by CSD with low-fluorine solutions. The crystallization process was optimized to achieve the highest self-field critical current density (Jc_{c}) at 77 K. Commonly, for the investigation of a CSD process involving numerous process factors, one factor is changed keeping the others constant, requiring much time and cost. For more efficient investigation, this study adopted a novel design-of-experiment technique, definitive screening design (DSD), for the first time in CSD process. Two different types of solutions containing Er-propionate or Er-acetate were used to make two types of samples, Er-P and Er-A, respectively. Within the investigated range, we found that crystallization temperature, dew point, and oxygen partial pressure play a key role in Er-P, while the former two factors are significant for Er-A. DSD revealed these significant factors among six process factors with only 14 trials. Moreover, the DSD approach allowed us to create models that predict Jc_{c} accurately. These models revealed the optimum conditions giving the highest Jc_{c} values of 3.6 MA/cm2^{2} for Er-P and 3.0 MA/cm2^{2} for Er-A. These results indicate that DSD is an attractive approach to optimize CSD process

    LHC sensitivity to lepton flavour violating Z boson decays

    Get PDF
    We estimate that the LHC could set bounds BR(Z -> mu^\pm e^\mp) < 4.1 * 10^{-7} and BR(Z -> tau^\pm mu^\mp)< 3.5 * 10^{-6} (at 95% C.L.) with 20 inverse fb of data at 8 TeV. A similar sensitivity can be anticipated for Z -> tau^\pm e^\mp, because we consider leptonic tau decays such that Z -> tau^+ mu^- gives e^+ \mu^- +$ invisibles. These limits can be compared to the LEP1 bounds of order 10^{-5} to 10^{-6}. Such collider searches are sensitive to a flavour-changing effective Z coupling which is energy dependent, so are complementary to bounds obtained from tau to 3mu and mu to 3e.Comment: 11 pages, 2 figures, version for publicatio

    A New Noncommutative Product on the Fuzzy Two-Sphere Corresponding to the Unitary Representation of SU(2) and the Seiberg-Witten Map

    Get PDF
    We obtain a new explicit expression for the noncommutative (star) product on the fuzzy two-sphere which yields a unitary representation. This is done by constructing a star product, λ\star_{\lambda}, for an arbitrary representation of SU(2) which depends on a continuous parameter λ\lambda and searching for the values of λ\lambda which give unitary representations. We will find two series of values: λ=λj(A)=1/(2j)\lambda = \lambda^{(A)}_j=1/(2j) and λ=λj(B)=1/(2j+2)\lambda=\lambda^{(B)}_j =-1/(2j+2), where j is the spin of the representation of SU(2). At λ=λj(A)\lambda = \lambda^{(A)}_j the new star product λ\star_{\lambda} has poles. To avoid the singularity the functions on the sphere must be spherical harmonics of order 2j\ell \leq 2j and then λ\star_{\lambda} reduces to the star product \star obtained by Preusnajder. The star product at λ=λj(B)\lambda=\lambda^{(B)}_j, to be denoted by \bullet, is new. In this case the functions on the fuzzy sphere do not need to be spherical harmonics of order 2j\ell \leq 2j. Because in this case there is no cutoff on the order of spherical harmonics, the degrees of freedom of the gauge fields on the fuzzy sphere coincide with those on the commutative sphere. Therefore, although the field theory on the fuzzy sphere is a system with finite degrees of freedom, we can expect the existence of the Seiberg-Witten map between the noncommutative and commutative descriptions of the gauge theory on the sphere. We will derive the first few terms of the Seiberg-Witten map for the U(1) gauge theory on the fuzzy sphere by using power expansion around the commutative point λ=0\lambda=0.Comment: 15 pages, typos corrected, references added, a note adde

    Dose equivalents of antidepressants: Evidence-based recommendations from randomized controlled trials

    Get PDF
    Dose equivalence of antidepressants is critically important for clinical practice and for research. There are several methods to define and calculate dose equivalence but for antidepressants, only daily defined dose and consensus methods have been applied to date. The purpose of the present study is to examine dose equivalence of antidepressants by a less arbitrary and more systematic method

    Entanglement quantification from incomplete measurements: Applications using photon-number-resolving weak homodyne detectors

    Full text link
    The certificate of success for a number of important quantum information processing protocols, such as entanglement distillation, is based on the difference in the entanglement content of the quantum states before and after the protocol. In such cases, effective bounds need to be placed on the entanglement of non-local states consistent with statistics obtained from local measurements. In this work, we study numerically the ability of a novel type of homodyne detector which combines phase sensitivity and photon-number resolution to set accurate bounds on the entanglement content of two-mode quadrature squeezed states without the need for full state tomography. We show that it is possible to set tight lower bounds on the entanglement of a family of two-mode degaussified states using only a few measurements. This presents a significant improvement over the resource requirements for the experimental demonstration of continuous-variable entanglement distillation, which traditionally relies on full quantum state tomography.Comment: 18 pages, 6 figure
    corecore