80 research outputs found

    THE INFLUENCE OF GENISTEIN IMPLANTATION ON OFFSPRING SEX RATIOS AND THEIR RELATION TO ESTROGEN LEVELS IN THE BLOOD OF IRAQI CHICKENS

    Get PDF
    This study was carried out at the Poultry Research Station / Agricultural Research Department / Ministry of Agriculture, to investigate the effects of implanting genistein (GE) for the period of 1/February/2021 to 16/August/2021. into Iraqi local chickens at various ages on primary (PSF) and secondary (SSF) sex ratios of female, fertility (FE), and hatchability (HA) traits. At the age of 12 weeks, 100 hens and 20 roosters of Iraqi local chickens from the Poultry Research Station were used in this study. After numbering the hens, the birds were housed in individual cages and divided into four treatments (each with 25 chickens) as follows: T1: none implantation; T2, T3, and T4: implantation of 10 mg GE /kg weight at 14, 18, and 22 weeks of age, respectively. The experiment was divided into three periods, each for 28 weeks, and then rated according to the overall average and all of the traits studied. The results showed that implanting GE into hens had a positive influence on FE, PSF, SSF, and estrogen level (ES), especially at 18 weeks of age. There were also significant correlations between traits and ES in hens’ blood. It was also shown that the regression of most traits on ES is first order linear. As a result, it can be concluded that GE has a positive effect on ES, PSF, SSF, with the possibility of predicting sex ratios and sex offspring based on estrogen levels in the blood, and that implantation at 18 weeks of age has produced great results

    Situasi Filariasis Setelah Pengobatan Massal Tahun Ketiga di Kabupaten Mamuju Utara

    Full text link
    Mass Drug Administration (MDA) of lymphatic filariasis has been carried out for three years in North of Mamuju District. However, achievement of efficacy of this programme was unknown. The implementation of mass treatment to filariasis have been conducted for three years in the District of North Mamuju, but achievement of efficacy of this activity were not known yet. To determine the change of filarial situation as well as knowledge, attitude and behavior of the people to filariasis, after three years mass drug treatment, studies were conducted in March-November 2015, the activities were to collect mass blood fingerprick and interview to the local community. The blood fingerprick was conducted to two selected villages do to age 5 years up old (β‰₯ 5 years), and interviewed was conducted to thirty selected villages do to age 15 years up old (β‰₯ 15 years). The results showed that microfilaria rate in North Mamuju district was 1,39%, and the species was Brugiamalayi. Interviewed to 1,586 respondents indicated that knowledge of filariasis disease and the mass treatment it self were low, similary with the behavior related prevention to drug consumption. On the other hand their behave to prevention, control and filariasis treatment were positif. Microfilaria rate was still higher than 1%, as well as knowledge, attitude and behavior related to prevention and mass drug consumption were particularly still low, those indicated that after three years of mass drug treatment implementation the result did not showed as excpected. It suggested that mass drug implementation in North Mamuju need to be continued until five years,with right procedures and seriously monitoring to the area with chronic and microfilaria positive cases

    Neurofascin as a novel target for autoantibody-mediated axonal injury

    Get PDF
    Axonal injury is considered the major cause of disability in patients with multiple sclerosis (MS), but the underlying effector mechanisms are poorly understood. Starting with a proteomics-based approach, we identified neurofascin-specific autoantibodies in patients with MS. These autoantibodies recognize the native form of the extracellular domains of both neurofascin 186 (NF186), a neuronal protein concentrated in myelinated fibers at nodes of Ranvier, and NF155, the oligodendrocyte-specific isoform of neurofascin. Our in vitro studies with hippocampal slice cultures indicate that neurofascin antibodies inhibit axonal conduction in a complement-dependent manner. To evaluate whether circulating antineurofascin antibodies mediate a pathogenic effect in vivo, we cotransferred these antibodies with myelin oligodendrocyte glycoprotein–specific encephalitogenic T cells to mimic the inflammatory pathology of MS and breach the blood–brain barrier. In this animal model, antibodies to neurofascin selectively targeted nodes of Ranvier, resulting in deposition of complement, axonal injury, and disease exacerbation. Collectively, these results identify a novel mechanism of immune-mediated axonal injury that can contribute to axonal pathology in MS

    Guts within guts: the microbiome of the intestinal helminth parasite Ascaris suum is derived but distinct from its host

    Get PDF
    BACKGROUND: Intestinal helminths are extremely prevalent among humans and animals. In particular, intestinal roundworms affect more than 1 billion people around the globe and are a major issue in animal husbandry. These pathogens live in intimate contact with the host gut microbiota and harbor bacteria within their own intestines. Knowledge of the bacterial host microbiome at the site of infection is limited, and data on the parasite microbiome is, to the best of our knowledge, non-existent. RESULTS: The intestinal microbiome of the natural parasite and zoonotic macropathogen, Ascaris suum was analyzed in contrast to the diversity and composition of the infected host gut. 16S sequencing of the parasite intestine and host intestinal compartments showed that the parasite gut has a significantly less diverse microbiome than its host, and the host gut exhibits a reduced microbiome diversity at the site of parasite infection in the jejunum. While the host's microbiome composition at the site of infection significantly determines the microbiome composition of its parasite, microbial signatures differentiate the nematodes from their hosts as the Ascaris intestine supports the growth of microbes that are otherwise under-represented in the host gut. CONCLUSION: Our data clearly indicate that a nematode infection reduces the microbiome diversity of the host gut, and that the nematode gut represents a selective bacterial niche harboring bacteria that are derived but distinct from the host gut

    Activation of Type 1 Cannabinoid Receptor (CB1R) promotes neurogenesis in murine subventricular zone cell cultures

    Get PDF
    The endocannabinoid system has been implicated in the modulation of adult neurogenesis. Here, we describe the effect of type 1 cannabinoid receptor (CB1R) activation on self-renewal, proliferation and neuronal differentiation in mouse neonatal subventricular zone (SVZ) stem/progenitor cell cultures. Expression of CB1R was detected in SVZ-derived immature cells (Nestin-positive), neurons and astrocytes. Stimulation of the CB1R by (R)-(+)-Methanandamide (R-m-AEA) increased self-renewal of SVZ cells, as assessed by counting the number of secondary neurospheres and the number of Sox2+/+ cell pairs, an effect blocked by Notch pathway inhibition. Moreover, R-m-AEA treatment for 48 h, increased proliferation as assessed by BrdU incorporation assay, an effect mediated by activation of MAPK-ERK and AKT pathways. Surprisingly, stimulation of CB1R by R-m-AEA also promoted neuronal differentiation (without affecting glial differentiation), at 7 days, as shown by counting the number of NeuN-positive neurons in the cultures. Moreover, by monitoring intracellular calcium concentrations ([Ca2+](i)) in single cells following KCl and histamine stimuli, a method that allows the functional evaluation of neuronal differentiation, we observed an increase in neuronal-like cells. This proneurogenic effect was blocked when SVZ cells were co-incubated with R-m-AEA and the CB1R antagonist AM 251, for 7 days, thus indicating that this effect involves CB1R activation. In accordance with an effect on neuronal differentiation and maturation, R-m-AEA also increased neurite growth, as evaluated by quantifying and measuring the number of MAP2-positive processes. Taken together, these results demonstrate that CB1R activation induces proliferation, self-renewal and neuronal differentiation from mouse neonatal SVZ cell cultures.Fundacao para a Ciencia e a Tecnologia - Portugal [POCTI/SAU-NEU/68465/2006, PTDC/SAU-NEU/104415/2008, PTDC/SAU-NEU/101783/2008, POCTI/SAU-NEU/110838/2009]; Fundacao Calouste Gulbenkian [96542]; Fundacao para a Ciencia e Tecnologiainfo:eu-repo/semantics/publishedVersio

    The three main monotheistic religions and gm food technology: an overview of perspectives

    Get PDF
    Abstract Background Public acceptance of genetically modified crops is partly rooted in religious views. However, the views of different religions and their potential influence on consumers' decisions have not been systematically examined and summarized in a brief overview. We review the positions of the Judaism, Islam and Christianity – the three major monotheistic religions to which more than 55% of humanity adheres to – on the controversies aroused by GM technology. Discussion The article establishes that there is no overarching consensus within the three religions. Overall, however, it appears that mainstream theology in all three religions increasingly tends towards acceptance of GM technology per se, on performing GM research, and on consumption of GM foods. These more liberal approaches, however, are predicated on there being rigorous scientific, ethical and regulatory scrutiny of research and development of such products, and that these products are properly labeled. Summary We conclude that there are several other interests competing with the influence exerted on consumers by religion. These include the media, environmental activists, scientists and the food industry, all of which function as sources of information and shapers of perception for consumers

    Differences in Spontaneously Avoiding or Approaching Mice Reflect Differences in CB1-Mediated Signaling of Dorsal Striatal Transmission

    Get PDF
    Approach or avoidance behaviors are accompanied by perceptual vigilance for, affective reactivity to and behavioral predisposition towards rewarding or punitive stimuli, respectively. We detected three subpopulations of C57BL/6J mice that responded with avoiding, balancing or approaching behaviors not induced by any experimental manipulation but spontaneously displayed in an approach/avoidance conflict task. Although the detailed neuronal mechanisms underlying the balancing between approach and avoidance are not fully clarified, there is growing evidence that endocannabinoid system (ECS) plays a critical role in the control of these balancing actions. The sensitivity of dorsal striatal synapses to the activation of cannabinoid CB1 receptors was investigated in the subpopulations of spontaneously avoiding, balancing or approaching mice. Avoiding animals displayed decreased control of CB1 receptors on GABAergic striatal transmission and in parallel increase of behavioral inhibition. Conversely, approaching animals exhibited increased control of CB1 receptors and in parallel increase of explorative behavior. Balancing animals reacted with balanced responses between approach and avoidance patterns. Treating avoiding animals with URB597 (fatty acid amide hydrolase inhibitor) or approaching animals with AM251 (CB1 receptor inverse agonist) reverted their respective behavioral and electrophysiological patterns. Therefore, enhanced or reduced CB1-mediated control on dorsal striatal transmission represents the synaptic hallmark of the approach or avoidance behavior, respectively. Thus, the opposite spontaneous responses to conflicting stimuli are modulated by a different involvement of endocannabinoid signaling of dorsal striatal neurons in the range of temperamental traits related to individual differences

    Capsaicin-Induced Changes in LTP in the Lateral Amygdala Are Mediated by TRPV1

    Get PDF
    The transient receptor potential vanilloid type 1 (TRPV1) channel is a well recognized polymodal signal detector that is activated by painful stimuli such as capsaicin. Here, we show that TRPV1 is expressed in the lateral nucleus of the amygdala (LA). Despite the fact that the central amygdala displays the highest neuronal density, the highest density of TRPV1 labeled neurons was found within the nuclei of the basolateral complex of the amygdala. Capsaicin specifically changed the magnitude of long-term potentiation (LTP) in the LA in brain slices of mice depending on the anesthetic (ether, isoflurane) used before euthanasia. After ether anesthesia, capsaicin had a suppressive effect on LA-LTP both in patch clamp and in extracellular recordings. The capsaicin-induced reduction of LTP was completely blocked by the nitric oxide synthase (NOS) inhibitor L-NAME and was absent in neuronal NOS as well as in TRPV1 deficient mice. The specific antagonist of cannabinoid receptor type 1 (CB1), AM 251, was also able to reduce the inhibitory effect of capsaicin on LA-LTP, suggesting that stimulation of TRPV1 provokes the generation of anandamide in the brain which seems to inhibit NO synthesis. After isoflurane anesthesia before euthanasia capsaicin caused a TRPV1-mediated increase in the magnitude of LA-LTP. Therefore, our results also indicate that the appropriate choice of the anesthetics used is an important consideration when brain plasticity and the action of endovanilloids will be evaluated. In summary, our results demonstrate that TRPV1 may be involved in the amygdala control of learning mechanisms
    • …
    corecore