749 research outputs found

    Magnetotransport in Sr3PbO antiperovskite with three-dimensional massive Dirac electrons

    Full text link
    Novel topological phenomena are anticipated for three-dimensional (3D) Dirac electrons. The magnetotransport properties of cubic Sr3PbO{\rm Sr_{3}PbO} antiperovskite, theoretically proposed to be a 3D massive Dirac electron system, are studied. The measurements of Shubnikov-de Haas oscillations and Hall resistivity indicate the presence of a low density (1×1018\sim 1 \times 10^{18} cm3{\rm cm^{-3}}) of holes with an extremely small cyclotron mass of 0.01-0.06mem_{e}. The magnetoresistance Δρxx(B)\Delta\rho_{xx}(B) is linear in magnetic field BB with the magnitude independent of temperature. These results are fully consistent with the presence of 3D massive Dirac electrons in Sr3PbO{\rm Sr_{3}PbO}. The chemical flexibility of the antiperovskites and our findings in the family member, Sr3PbO{\rm Sr_{3}PbO}, point to their potential as a model system in which to explore exotic topological phases

    Model-independent test of gravity with a network of ground-based gravitational-wave detectors

    Full text link
    The observation of gravitational waves with a global network of interferometric detectors such as advanced LIGO, advanced Virgo, and KAGRA will make it possible to probe into the nature of space-time structure. Besides Einstein's general theory of relativity, there are several theories of gravitation that passed experimental tests so far. The gravitational-wave observation provides a new experimental test of alternative theories of gravity because a gravitational wave may have at most six independent modes of polarization, of which properties and number of modes are dependent on theories of gravity. This paper proposes a method to reconstruct the independent modes of polarization in time-series data of an advanced detector network. Since the method does not rely on any specific model, it gives model-independent test of alternative theories of gravity

    Searches for gravitational waves associated with pulsar glitches using a coherent network algorithm

    Full text link
    Pulsar glitches are a potential source of gravitational waves for current and future interferometric gravitational wave detectors. Some pulsar glitch events were observed by radio and X-ray telescopes during the fifth LIGO science run. It is expected that glitches from these same pulsars should also be seen in the future. We carried out Monte Carlo simulations to estimate the sensitivity of possible gravitational wave signals associated with a pulsar glitch using a coherent network analysis method. We show the detection efficiency and evaluate the reconstruction accuracy of gravitational waveforms using a matched filter analysis on the estimated gravitational waveforms from the coherent analysis algorithm.Comment: submitted to CQ

    Inverse-perovskites A3BO (A = Sr, Ca, Eu/B = Pb, Sn) : a platform for control of Dirac and Weyl fermions

    Get PDF
    This work was partly supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant Nos. 24224010, 15K13523, JP15H05852, JP15K21717, and 17H01140), EPSRC (Grant No. EP/P024564/1), and the Alexander von Humboldt FoundationBulk Dirac electron systems have attracted strong interest for their unique magnetoelectric properties as well as their close relation to topological (crystalline) insulators. Recently, the focus has been shifting toward the role of magnetism in stabilizing Weyl fermions as well as chiral surface states in such materials. While a number of nonmagnetic systems are well known, experimental realizations of magnetic analogs are a key focus of current studies. Here, we report on the physical properties of a large family of inverse perovskites A3BO (A = Sr, Ca, Eu/B = Pb, Sn) in which we are able to not only stabilize 3D Dirac electrons at the Fermi energy but also chemically control their properties. In particular, it is possible to introduce a controllable Dirac gap, change the Fermi velocity, tune the anisotropy of the Dirac dispersion, and—crucially—introduce complex magnetism into the system. This family of compounds therefore opens up unique possibilities for the chemical control and systematic investigation of the fascinating properties of such topological semimetals.Publisher PDFPeer reviewe

    Prospects for improving the sensitivity of KAGRA gravitational wave detector

    No full text
    KAGRA is a new gravitational wave detector which aims to begin joint observation with Advanced LIGO and Advanced Virgo from late 2019. Here, we present KAGRA's possible upgrade plans to improve the sensitivity in the decade ahead. Unlike other state-of-the-art detectors, KAGRA requires different investigations for the upgrade since it is the only detector which employs cryogenic cooling of the test mass mirrors. In this paper, investigations on the upgrade plans which can be realized by changing the input laser power, increasing the mirror mass, and injecting frequency dependent squeezed vacuum are presented. We show how each upgrade affects to the detector frequency bands and also discuss impacts on gravitational-wave science. We then propose an effective progression of upgrades based on technical feasibility and scientific scenarios

    Report on the first round of the Mock LISA Data Challenges

    Get PDF
    The Mock LISA Data Challenges (MLDCs) have the dual purpose of fostering the development of LISA data analysis tools and capabilities, and demonstrating the technical readiness already achieved by the gravitational-wave community in distilling a rich science payoff from the LISA data output. The first round of MLDCs has just been completed: nine data sets containing simulated gravitational wave signals produced either by galactic binaries or massive black hole binaries embedded in simulated LISA instrumental noise were released in June 2006 with deadline for submission of results at the beginning of December 2006. Ten groups have participated in this first round of challenges. Here we describe the challenges, summarise the results, and provide a first critical assessment of the entries.Comment: Proceedings report from GWDAW 11. Added author, added reference, clarified some text, removed typos. Results unchanged; Removed author, minor edits, reflects submitted versio

    Networks of gravitational wave detectors and three figures of merit

    Full text link
    This paper develops a general framework for studying the effectiveness of networks of interferometric gravitational wave detectors and then uses it to show that enlarging the existing LIGO-VIRGO network with one or more planned or proposed detectors in Japan (LCGT), Australia, and India brings major benefits, including much larger detection rate increases than previously thought... I show that there is a universal probability distribution function (pdf) for detected SNR values, which implies that the most likely SNR value of the first detected event will be 1.26 times the search threshold. For binary systems, I also derive the universal pdf for detected values of the orbital inclination, taking into account the Malmquist bias; this implies that the number of gamma-ray bursts associated with detected binary coalescences should be 3.4 times larger than expected from just the beaming fraction of the gamma burst. Using network antenna patterns, I propose three figures of merit that characterize the relative performance of different networks... Adding {\em any} new site to the planned LIGO-VIRGO network can dramatically increase, by factors of 2 to 4, the detected event rate by allowing coherent data analysis to reduce the spurious instrumental coincident background. Moving one of the LIGO detectors to Australia additionally improves direction-finding by a factor of 4 or more. Adding LCGT to the original LIGO-VIRGO network not only improves direction-finding but will further increase the detection rate over the extra-site gain by factors of almost 2, partly by improving the network duty cycle... Enlarged advanced networks could look forward to detecting three to four hundred neutron star binary coalescences per year.Comment: 38 pages, 7 figures, 2 tables. Accepted for publication in Classical and Quantum Gravit

    Determination of the angular momentum distribution of supernovae from gravitational wave observations

    Full text link
    Significant progress has been made in the development of an international network of gravitational wave detectors, such as TAMA300, LIGO, VIRGO, and GEO600. For these detectors, one of the most promising sources of gravitational waves are core collapse supernovae especially in our Galaxy. Recent simulations of core collapse supernovae, rigorously carried out by various groups, show that the features of the waveforms are determined by the rotational profiles of the core, such as the rotation rate and the degree of the differential rotation prior to core-collapse. Specifically, it has been predicted that the sign of the second largest peak in the gravitational wave strain signal is negative if the core rotates cylindrically with strong differential rotation. The sign of the second peak could be a nice indicator that provides us with information about the angular momentum distribution of the core, unseen without gravitational wave signals. Here we present a data analysis procedure aiming at the detection of the second peak using a coherent network analysis and estimate the detection efficiency when a supernova is at the sky location of the Galactic center. The simulations showed we were able to determine the sign of the second peak under an idealized condition of a network of gravitational wave detectors if a supernova occurs at the Galactic center.Comment: 9 pages, 11 figures, add references and some sentenses. To appear on CQ
    corecore