117 research outputs found

    Identification and functional characterization of cataract-specific gene expression changes reveals important pathways for human lens maintenance, aging and disease

    Get PDF
    Human age-related cataract, and opacity of the eye lens, is a multifactorial disease with a poorly understood etiology and is the leading cause of world blindness and low vision. It has been estimated that any therapy that could delay the onset of age-related cataract by ten years would halve the number of individuals requiring surgery in their lifetime. To accomplish such a feat, it is essential to understand the molecular mechanisms and biological pathways associated with this disease. Here, I describe the global gene expression profiles of human age-related cataracts compared to clear lenses, differentiate these changes from those that occur with aging of the human lens, cluster the identified genes to reveal functional pathways altered in this disease, characterize a family of proteins in lens epithelial cells that respond to the presence of toxic metals known to be associated with cataract formation and implicate an important role for the methionine sulfoxide reductase A enzyme in protecting lens cells against oxidative stress damage. The results of the present work indicate that human age-related cataract is associated with multiple, previously identified, and novel lens epithelial gene expression changes and provide evidence that these changes are likely to be specific for cataract and not due to aging of the lens, have identified multiple genes that respond to the presence of insults associate with human cataract and implicate an important role for specific genes in the maintenance of lens transparency. Together, these data provide the foundation for some of the molecular events associated with human age-related cataract, categorize multiple pathways that may play critical roles in the development of cataract and provide evidence for essential functions of specific genes in protecting lens cells against oxidative stress

    Health benefits attributed to 17Ξ±-estradiol, a lifespan-extending compound, are mediated through estrogen receptor Ξ±.

    Get PDF
    Metabolic dysfunction underlies several chronic diseases, many of which are exacerbated by obesity. Dietary interventions can reverse metabolic declines and slow aging, although compliance issues remain paramount. 17Ξ±-estradiol treatment improves metabolic parameters and slows aging in male mice. The mechanisms by which 17Ξ±-estradiol elicits these benefits remain unresolved. Herein, we show that 17Ξ±-estradiol elicits similar genomic binding and transcriptional activation through estrogen receptor Ξ± (ERΞ±) to that of 17Ξ²-estradiol. In addition, we show that the ablation of ERΞ± completely attenuates the beneficial metabolic effects of 17Ξ±-E2 in male mice. Our findings suggest that 17Ξ±-E2 may act through the liver and hypothalamus to improve metabolic parameters in male mice. Lastly, we also determined that 17Ξ±-E2 improves metabolic parameters in male rats, thereby proving that the beneficial effects of 17Ξ±-E2 are not limited to mice. Collectively, these studies suggest ERΞ± may be a drug target for mitigating chronic diseases in male mammals

    Aurora-A Mitotic Kinase Induces Endocrine Resistance through Down-Regulation of ERα Expression in Initially ERα+ Breast Cancer Cells

    Get PDF
    Development of endocrine resistance during tumor progression represents a major challenge in the management of estrogen receptor alpha (ERα) positive breast tumors and is an area under intense investigation. Although the underlying mechanisms are still poorly understood, many studies point towards the Γ’β‚¬Λœcross-talkÒ€ℒ between ERα and MAPK signaling pathways as a key oncogenic axis responsible for the development of estrogen-independent growth of breast cancer cells that are initially ERα+ and hormone sensitive. In this study we employed a metastatic breast cancer xenograft model harboring constitutive activation of Raf-1 oncogenic signaling to investigate the mechanistic linkage between aberrant MAPK activity and development of endocrine resistance through abrogation of the ERα signaling axis. We demonstrate for the first time the causal role of the Aurora-A mitotic kinase in the development of endocrine resistance through activation of SMAD5 nuclear signaling and down-regulation of ERα expression in initially ERα+ breast cancer cells. This contribution is highly significant for the treatment of endocrine refractory breast carcinomas, because it may lead to the development of novel molecular therapies targeting the Aurora-A/SMAD5 oncogenic axis. We postulate such therapy to result in the selective eradication of endocrine resistant ERαlow/Òˆ’ cancer cells from the bulk tumor with consequent benefits for breast cancer patients

    TGF-Ξ² Inducible Early Gene 1 Regulates Osteoclast Differentiation and Survival by Mediating the NFATc1, AKT, and MEK/ERK Signaling Pathways

    Get PDF
    TGF-Ξ² Inducible Early Gene-1 (TIEG1) is a KrΓΌppel-like transcription factor (KLF10) that was originally cloned from human osteoblasts as an early response gene to TGF-Ξ² treatment. As reported previously, TIEG1βˆ’/βˆ’ mice have decreased cortical bone thickness and vertebral bone volume and have increased spacing between the trabeculae in the femoral head relative to wildtype controls. Here, we have investigated the role of TIEG1 in osteoclasts to further determine their potential role in mediating this phenotype. We have found that TIEG1βˆ’/βˆ’ osteoclast precursors differentiated more slowly compared to wildtype precursors in vitro and high RANKL doses are able to overcome this defect. We also discovered that TIEG1βˆ’/βˆ’ precursors exhibit defective RANKL-induced phosphorylation and accumulation of NFATc1 and the NFATc1 target gene DC-STAMP. Higher RANKL concentrations reversed defective NFATc1 signaling and restored differentiation. After differentiation, wildtype osteoclasts underwent apoptosis more quickly than TIEG1βˆ’/βˆ’ osteoclasts. We observed increased AKT and MEK/ERK signaling pathway activation in TIEG1βˆ’/βˆ’ osteoclasts, consistent with the roles of these kinases in promoting osteoclast survival. Adenoviral delivery of TIEG1 (AdTIEG1) to TIEG1βˆ’/βˆ’ cells reversed the RANKL-induced NFATc1 signaling defect in TIEG1βˆ’/βˆ’ precursors and eliminated the differentiation and apoptosis defects. Suppression of TIEG1 with siRNA in wildtype cells reduced differentiation and NFATc1 activation. Together, these data provide evidence that TIEG1 controls osteoclast differentiation by reducing NFATc1 pathway activation and reduces osteoclast survival by suppressing AKT and MEK/ERK signaling

    TIEG1/KLF10 Modulates Runx2 Expression and Activity in Osteoblasts

    Get PDF
    Deletion of TIEG1/KLF10 in mice results in a gender specific osteopenic skeletal phenotype with significant defects in both cortical and trabecular bone, which are observed only in female animals. Calvarial osteoblasts isolated from TIEG1 knockout (KO) mice display reduced expression levels of multiple bone related genes, including Runx2, and exhibit significant delays in their mineralization rates relative to wildtype controls. These data suggest that TIEG1 plays an important role in regulating Runx2 expression in bone and that decreased Runx2 expression in TIEG1 KO mice is in part responsible for the observed osteopenic phenotype. In this manuscript, data is presented demonstrating that over-expression of TIEG1 results in increased expression of Runx2 while repression of TIEG1 results in suppression of Runx2. Transient transfection and chromatin immunoprecipitation assays reveal that TIEG1 directly binds to and activates the Runx2 promoter. The zinc finger containing domain of TIEG1 is necessary for this regulation supporting that activation occurs through direct DNA binding. A role for the ubiquitin/proteasome pathway in fine tuning the regulation of Runx2 expression by TIEG1 is also implicated in this study. Additionally, the regulation of Runx2 expression by cytokines such as TGFΞ²1 and BMP2 is shown to be inhibited in the absence of TIEG1. Co-immunoprecipitation and co-localization assays indicate that TIEG1 protein associates with Runx2 protein resulting in co-activation of Runx2 transcriptional activity. Lastly, Runx2 adenoviral infection of TIEG1 KO calvarial osteoblasts leads to increased expression of Runx2 and enhancement of their ability to differentiate and mineralize in culture. Taken together, these data implicate an important role for TIEG1 in regulating the expression and activity of Runx2 in osteoblasts and suggest that decreased expression of Runx2 in TIEG1 KO mice contributes to the observed osteopenic bone phenotype

    The selective cyclooxygenase-2 inhibitor NS398 ameliorates cisplatin-induced impairments in mitochondrial and cognitive function

    Get PDF
    Chemobrain is a condition that negatively affects cognition in cancer patients undergoing active chemotherapy, as well as following chemotherapy cessation. Chemobrain is also known as chemotherapy-induced cognitive impairment (CICI) and has emerged as a significant medical contingency. There is no therapy to ameliorate this condition, hence identification of novel therapeutic strategies to prevent CICI is of great interest to cancer survivors. Utilizing the platinum-based chemotherapy cisplatin in an investigative approach for CICI, we identified increased expression of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in the adult mouse hippocampus, and in human cortical neuron cultures derived from induced pluripotent stem cells (iPSCs). Notably, administration of NS398, a selective COX-2 inhibitor, prevented CICI in vivo without negatively affecting the antitumor efficacy of cisplatin or potentiating tumor growth. Given that dysfunctional mitochondrial bioenergetics plays a prominent role in CICI, we explored the effects of NS398 in cisplatin-induced defects in human cortical mitochondria. We found that cisplatin significantly reduces mitochondrial membrane potential (MMP), increases matrix swelling, causes loss of cristae membrane integrity, impairs ATP production, as well as decreases cell viability and dendrite outgrowth. Pretreatment with NS398 in human cortical neurons attenuated mitochondrial dysfunction caused by cisplatin, while improving cell survival and neurite morphogenesis. These results suggest that aberrant COX-2 inflammatory pathways may contribute in cisplatin-induced mitochondrial damage and cognitive impairments. Therefore, COX-2 signaling may represent a viable therapeutic approach to improve the quality of life for cancer survivors experiencing CICI
    • …
    corecore